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Who Are We?

● Students at UC Berkeley
● Work done at Machine Learning @ Berkeley (ML@B)

○ ml.berkeley.edu
○ Aim to provide AI/ML opportunities at the undergraduate level

http://ml.berkeley.edu
http://ml.berkeley.edu


What is an 
Adversarial Example?



Adversarial Example



Untargeted vs Targeted

● Untargeted: Provide input to the model such 
that it misclassifies the adversarial input

● Targeted: Provide input to the model so it 
classifies it as a predetermined target class



White Box vs Black Box

● White box: complete knowledge of model 
architecture and parameters, allows for 
gradient computation

● Black box: no knowledge of model or 
parameters except for output logits of model



Why does this matter?
● Black box attacks can be of particular 

interest in ASR systems

● If we can create an adversarial audio 
file, we can trick the model into 
translating what we want

● If we do this with a black box 
approach, we can apply this to 
proprietary systems (ex. Google or 
IBM APIs) 



Classical Adversarial Attacks

● Taking gradient iteratively
● FGSM - Fast Gradient Sign Method
● Houdini



Prior Work in Audio

● UCLA - Black box genetic algorithm on 
single word classes → softmax loss

● Carlini & Wagner: white box attack 
○ CTC loss allows for comparison with arbitrary 

length translations
● Our project: Black box genetic algorithm on 

sentences using CTC Loss



without the 
dataset the article 
is useless
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ok google 
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Problem Statement
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Problem Statement

● Black-box Targeted Attack
○ Given a target t, a benign input x, and model M, 

perturb x to form x’=x+𝜹 
○ S.t. M(x’)=t while maximizing cross_correlation(x, x’)
○ Only have access to logits of M

■ Not given gradients!



Datasource: DeepSpeech
● The model we are targeting is DeepSpeech

○ Architecture created by Baidu
○ Tensorflow implementation by Mozilla; available on 

Github
● Utilize Common Voice dataset by Mozilla

○ Consists of voice samples
○ Sampling rate of 16 KHz



Final Algorithm: Guided Selection

● Genetic Algorithm approach
● Given the benign input, generate population 

of size 100
● On each iteration select the best 10 samples 

using scoring function
● Perform crossover and momentum mutation
● Apply high pass filter to added noise



Population

Evaluate fitness 
with CTC loss

Elite

Perform this population size times

Genetic Algorithm with Momentum

Crossover and Momentum Mutation (ours)



Momentum Mutation

● Probability of mutation is function of 
difference in scores across iterations

● If little increase in score between iterations, 
increase “momentum” by increasing 
probability of mutation

● Encourages decoding to build up to target after 
making input similar to silence

Decodings while training
and you know it

and he  nowit
nd he now
d he now

e now
a eloed
elorld

heloworld
hello world



Gradient Estimation

● Genetic algorithms work best when search 
space is large

● However, when adversarial sample is near 
target, only few key perturbations are 
necessary

● Apply gradient estimation at 100 random 
indices



Results

◎ Tested on first 100 samples of 
CommonVoice dataset

◎ Randomly generated 2 target words
◎ Targeted attack similarity: 89.25%

○ Algorithm could almost always reach the target
◎ Average similarity score: 94.6%

○ Computed via wav-file cross-correlation



Results



Example

Original file: “and you know it”

Adversarial target: “hello world”

Audio Similarity: 94% 
(cross-correlation)

https://docs.google.com/file/d/13BNRTvz6I3wpUxwoJ1zvoHJicKdK8s-y/preview
https://docs.google.com/file/d/16pg9S6QlsCavnCJuRBj4RtzHv8NgY_05/preview


Future Work

● Attack a broader range of models
○ Transferability across models

● Increasing sample efficiency to target
○ API call costs can be prohibitive

● Computational Efficiency



Thank You!

Code and samples: 
https://github.com/rtaori/Black-Box-Audio

https://github.com/rtaori/Black-Box-Audio

