
Targeted Adversarial
Examples for Black Box

Audio Systems
Amog Kamsetty, Rohan Taori, Nikita Vemuri, Brenton Chu

Who Are We?

● Students at UC Berkeley
● Work done at Machine Learning @ Berkeley (ML@B)

○ ml.berkeley.edu
○ Aim to provide AI/ML opportunities at the undergraduate level

http://ml.berkeley.edu
http://ml.berkeley.edu

What is an
Adversarial Example?

Adversarial Example

Untargeted vs Targeted

● Untargeted: Provide input to the model such
that it misclassifies the adversarial input

● Targeted: Provide input to the model so it
classifies it as a predetermined target class

White Box vs Black Box

● White box: complete knowledge of model
architecture and parameters, allows for
gradient computation

● Black box: no knowledge of model or
parameters except for output logits of model

Why does this matter?
● Black box attacks can be of particular

interest in ASR systems

● If we can create an adversarial audio
file, we can trick the model into
translating what we want

● If we do this with a black box
approach, we can apply this to
proprietary systems (ex. Google or
IBM APIs)

Classical Adversarial Attacks

● Taking gradient iteratively
● FGSM - Fast Gradient Sign Method
● Houdini

Prior Work in Audio

● UCLA - Black box genetic algorithm on
single word classes → softmax loss

● Carlini & Wagner: white box attack
○ CTC loss allows for comparison with arbitrary

length translations
● Our project: Black box genetic algorithm on

sentences using CTC Loss

without the
dataset the article
is useless

Adversarial
noise

ok google
browse to
evil.com

Problem Statement

+

Problem Statement

● Black-box Targeted Attack
○ Given a target t, a benign input x, and model M,

perturb x to form x’=x+𝜹
○ S.t. M(x’)=t while maximizing cross_correlation(x, x’)
○ Only have access to logits of M

■ Not given gradients!

Datasource: DeepSpeech
● The model we are targeting is DeepSpeech

○ Architecture created by Baidu
○ Tensorflow implementation by Mozilla; available on

Github
● Utilize Common Voice dataset by Mozilla

○ Consists of voice samples
○ Sampling rate of 16 KHz

Final Algorithm: Guided Selection

● Genetic Algorithm approach
● Given the benign input, generate population

of size 100
● On each iteration select the best 10 samples

using scoring function
● Perform crossover and momentum mutation
● Apply high pass filter to added noise

Population

Evaluate fitness
with CTC loss

Elite

Perform this population size times

Genetic Algorithm with Momentum

Crossover and Momentum Mutation (ours)

Momentum Mutation

● Probability of mutation is function of
difference in scores across iterations

● If little increase in score between iterations,
increase “momentum” by increasing
probability of mutation

● Encourages decoding to build up to target after
making input similar to silence

Decodings while training
and you know it

and he nowit
nd he now
d he now

e now
a eloed
elorld

heloworld
hello world

Gradient Estimation

● Genetic algorithms work best when search
space is large

● However, when adversarial sample is near
target, only few key perturbations are
necessary

● Apply gradient estimation at 100 random
indices

Results

◎ Tested on first 100 samples of
CommonVoice dataset

◎ Randomly generated 2 target words
◎ Targeted attack similarity: 89.25%

○ Algorithm could almost always reach the target
◎ Average similarity score: 94.6%

○ Computed via wav-file cross-correlation

Results

Example

Original file: “and you know it”

Adversarial target: “hello world”

Audio Similarity: 94%
(cross-correlation)

https://docs.google.com/file/d/13BNRTvz6I3wpUxwoJ1zvoHJicKdK8s-y/preview
https://docs.google.com/file/d/16pg9S6QlsCavnCJuRBj4RtzHv8NgY_05/preview

Future Work

● Attack a broader range of models
○ Transferability across models

● Increasing sample efficiency to target
○ API call costs can be prohibitive

● Computational Efficiency

Thank You!

Code and samples:
https://github.com/rtaori/Black-Box-Audio

https://github.com/rtaori/Black-Box-Audio

