

Exploring Adversarial Examples in Malware Detection

Octavian Suciu*, Scott E. Coull and Jeffrey Johns

Machine Learning for Malware Classification

- Evasion attacks against malware detectors contributed to an arms race spanning decades
- Extensive work on understanding evasion attempts affecting traditional ML-based detectors
- Defenders are increasingly employing new approaches such as end-to-end learning

We study the robustness of deep learning-based malware detectors against evasion attempts

Outline

Malware detectors based on deep learning

- Domain challenges for evasion
- Append Attack
- Slack Attacks

Feature Extraction in Static Malware Classification

Feature Engineering is challenging and time consuming

Automatically Learning Feature Representations

- ML-based solutions require extensive feature engineering
 - List of features must constantly evolve to capture adaptive adversaries
- One solution: end-to-end learning
 - Automatically learn important features from raw data

Representation Learning for Malware Classification				
Jeffrey Johns				
	Workshop track - ICLR 2	2018		
	DEEP CONVO Learn from	LUTIONAL MALWARE C	LASSIFIERS CAN D LABELS ONLY	
	Marek Krčál Czech Academy of Scie	Ondřej Švec, Otakar Jašek	Martin Bálek Avast	
Malware Detection by Eating a Whole EXE Edward Raff ^{1,3,4} , Jon Barker ² , Jared Sylvester ^{1,3} , Robert Brandon ^{1,3,4} Bryan Catanzaro ³ , Charles Nicholas ⁴ ¹ Laboratory for Physical Sciences, ³ NUDIA, ³ Boox Alen Hamilton, ⁴ University of Maryland, Baltimore County				
In this work we introduce malware detection from raw byte se- ing community. Building a neural network for such a problem presents a number of intersting challenges that have not curred in tasks such as image processing or NLP. In particu- lar, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where bach complication anopare to hindre the learning process. We do not seen ex- bility this behavior, and Skoudi 2007). Even when malware can alter its behavior, and Skoudi 2007). Even when malware can see this behavior, and Skoudi 2007). Even when malware can see this behavior, and Skoudi 2007). Even when malware can see this behavior, the analysics environment may complete the learning process. We do not see the learning process. We do not carred the learning process. We do not see the learning process. We do not carred the		cou ment, such as a cus- ntroduces high com- some cases it is pos- ing analyzed. When yor it, the malyare yor it, the malyare trinkel et al. 2007; Even when malware is environment may		

Learning from Raw Data

Character-level Convolutional Neural Networks for text classification [Zhang+, 2015]

- Embeddings: characters mapped to fixed-size vectors
- Convolutions: receptors for character compositions (e.g. words)
- Max-pooling: filters for non-informative features (e.g. common words)
- Fully connected: non-linear classifier

Analogy between Text and Programs

Natural Language:	Executable programs:	
the quick brown fox	\x90\x00\x03\x00\x04\x1C	
text characters	bytes	
words	instructions	
sentences	functions	

Byte-level Neural Networks for Malware Classification

Program Executable (PE) can be viewed as a sequence of bytes

MalConv: Malware Detector based on Raw Bytes

MalConv: Malware Detection by Eating a Whole EXE [Raff+, 2017]

- 2MB input padding, CNN 128 kernels with size=500 and stride=500
- Balanced Accuracy: 0.91 AUC = 0.98

Is MalConv vulnerable to AML-based evasion attacks?

Training a Robust Classifier

- Trainin MalConv on a production-scale dataset (FULL)
 - 12.5 M training samples with 2.2M malware
 - Training & testing sets have strict temporal separation
 - Frequent malware families are down-sampled to reduce bias
- Use published dataset [Anderson+, 2018] (EMBER)
 - 900 K training samples
 - Used pre-trained MalConv model shared with dataset
- Sample dataset comparable to prior work (MINI)
 - 4,000 goodware and 4,598 malware
 - Sampled from FULL

Outline

- Malware detectors based on deep learning
- Domain challenges for evasion
- Append Attack
- Slack Attacks

Evasion Attacks in Image Classification

Gradient directs instance across decision boundary

- [Szegedy+, 2014], [Papernot+, 2015], [Carlini and Wagner, 2017]
 [Goodfellow+, 2015]: Fast Gradient Sign Method

Can we apply these attacks directly to the malware detection domain?

Applying AML Attacks to Binaries

Existing evasion attacks break the functionality of the executable

Outline

- Malware detectors based on deep learning
- Domain challenges for evasion
- Append Attack
- Slack Attacks

Append-based Attacks

Appended noise preserves functionality by not modifying content of original bytes [Kolosnjaji+, 2018]

Naive Benign Append Attack

 Adversarial bytes are copied from benign samples correctly classified with high confidence

Benign Append Results

- SR on MINI increases linearly with number of bytes
 - Model overfits benign features due to a small dataset used for training a large capacity network

Benign Append Results

- SR on MINI increases linearly with number of bytes
 - Model overfits benign features due to a small dataset used for training a large capacity network
- EMBER & Full models are robust to the attack
 - Harder to overcome dataset features by appending benign bytes at the end of file

Take-away

Consider dataset biases when drawing conclusions about adversarial attack effectiveness

FGSM Append Attack

- Adversarial embeddings are generated using the single-step Fast Gradient Sign Method [Goodfellow+, 2015]
- Adversarial bytes are chosen as the L2 closest values in the embedding space

FGSM Append Results

Upper bound attack performance

- Larger training set leads to more vulnerable model
 - Full model encodes more sequential features
- High Success Rate highlights model vulnerability
 - Ample opportunity to evade MalConv

Why is attack so effective?

Architectural Weakness in MalConv

Architectural Weakness in MalConv

MalConv does not encode positional features

Adversarial Perturbation

Architectural Weakness in MalConv

- Larger training set leads to more vulnerable model
 - Full model encodes more sequential features
- High Success Rate highlights model vulnerability
 - Ample opportunity to evade MalConv

<u>Take-away</u>

Architectural choices may introduce vulnerabilities against adversarial attacks

Can we leverage program semantics in attacks?

Outline

- Malware detectors based on deep learning
- Domain challenges for evasion
- Append Attack
- Slack Attacks

Header contains pointers to sections of executable

Each Section has **RawSize** (size in PE file) and **VirtualSize** (size when loaded into memory)

The compiler may set VirtualSize smaller than RawSize

We could use slack regions to inject adversarial noise since they are not mapped to memory

Slack Attack Results

- Effectiveness of Slack FGSM on FULL Benign Append

 Slack FGSM outperforms append strategies at
 smaller number of modified bytes
 - Attack uses contextual byte information about feature importance
 - But there is a limited number of slack bytes available

Take-away

Reasoning about program semantics helps improve attack effectiveness

Lessons Learned

- Training set matters when testing robustness against adversarial examples
 - Small dataset gives skewed estimates about attack success rates
- Architectural decisions should consider potential effect of adversarial examples
 - Models that do not encode positional information can be easily bypassed
- Semantics is important for improving attack effectiveness
 - Reasoning about feature importance helps exploit higher-level learned ones

Octavian Suciu osuciu.com osuciu@umiacs.umd.edu

References

- [Raff+, 2017] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas, "Malware detection by eating a whole exe,"
- [Anderson+, 2018] H. S. Anderson and P. Roth, "EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models,"
- [Szegedy+, 2014] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, "Intriguing properties of neural networks,"
- [Papernot+, 2015] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A., "The limitations of deep learning in adversarial settings"
- [Carlini and Wagner, 2017] N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks,"
- [Goodfellow+, 2015] I. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples,"
- [Kolosnjaji+, 2018] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F. Roli, "Adversarial malware binaries: Evading deep learning for malware detection in executables,"