On the Robustness of Deep k-Nearest Neighbor

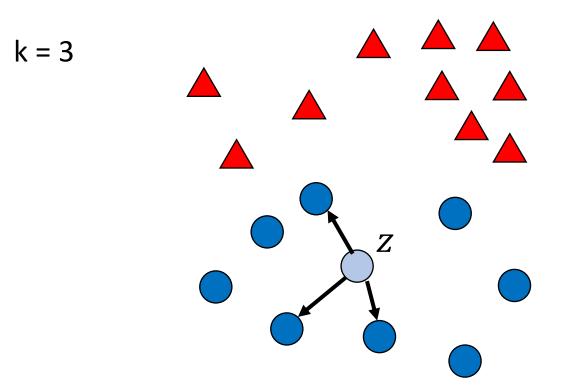
Chawin Sitawarin EECS, UC Berkeley chawins@berkeley.edu

David Wagner EECS, UC Berkeley daw@cs.berkeley.edu 2nd Deep Learning and Security Workshop (IEEE S&P 2019)

"Adversarial examples for kNN and DkNN "

- No previous work attacks kNN directly
- Deep k-Nearest Neighbor (DkNN) shows a possibility for detecting adversarial examples but it is difficult to evaluate
- kNN is not differentiable so most existing attacks don't work
- To measure how robust they really are, we need a white-box attack (no security through obscurity)

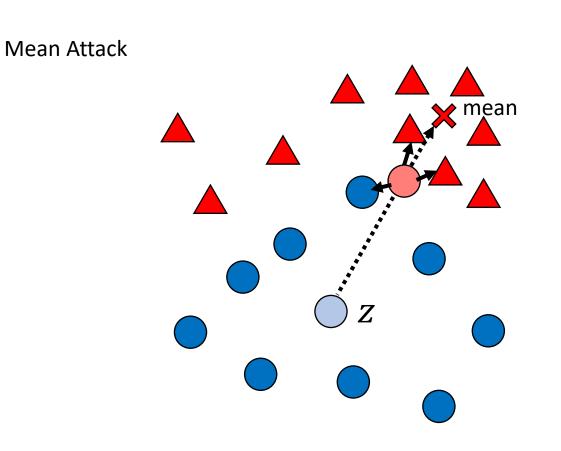
k-Nearest Neighbor



Threat model: white-box, untargeted, Lp norm-ball adversarial examples

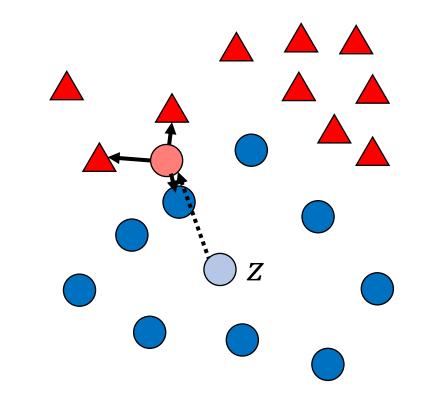
• All training samples are known to the attacker

- Baseline: mean attack
 - Move z towards mean of the nearest class
 - Use binary search to determine the distance
- But this is not optimal



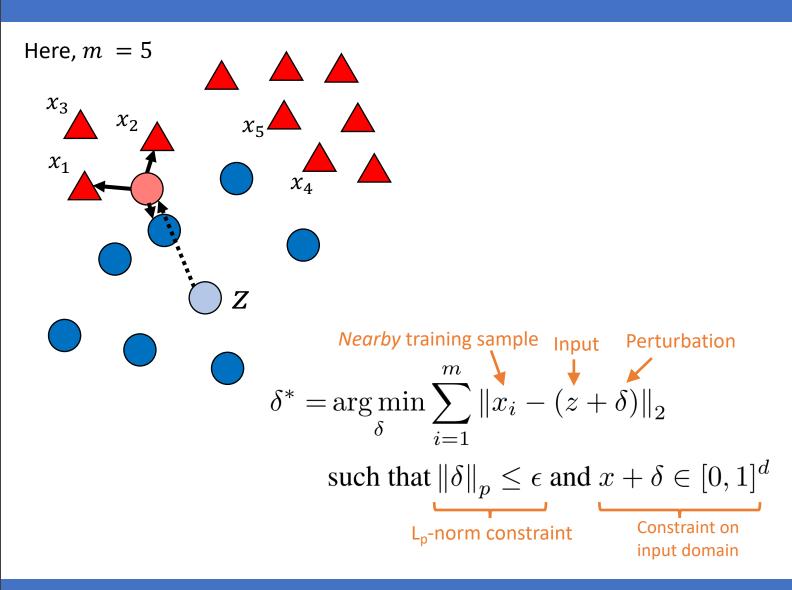
- Our gradient-based attack
 - Main idea: move z towards

 a set of m nearest
 neighbors from a different
 class, {x_i}

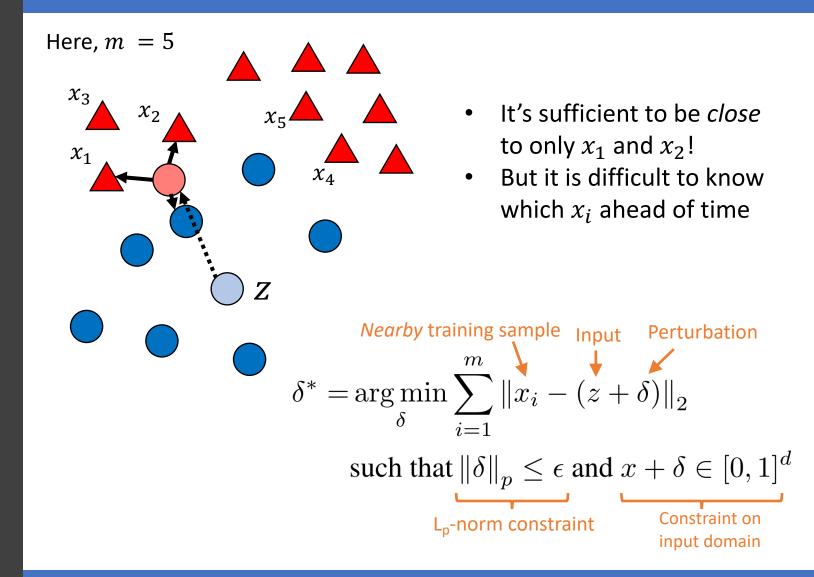


DLS '19 (IEEE S&P) On the Robustness of Deep k-Nearest Neighbor 5

- Our gradient-based attack
 - Main idea: move z towards a set of m nearest neighbors from a different class, {x_i}
 - Set up as a constrained optimization problem
- *We use Euclidean distance here, but it can be directly substituted with cosine distance



- Our gradient-based attack
 - Main idea: move z towards a set of m nearest neighbors from a different class, {x_i}
 - Set up as a constrained optimization problem

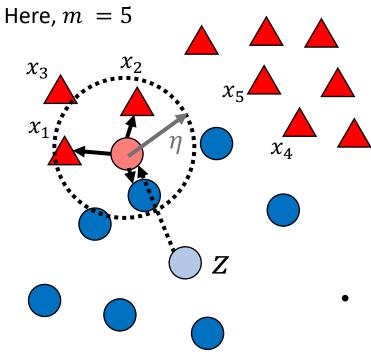


Chawin Sitawarin

DLS '19 (IEEE S&P) On the Robustness of Deep k-Nearest Neighbor 7

- Our gradient-based attack
 - Main idea: move z towards

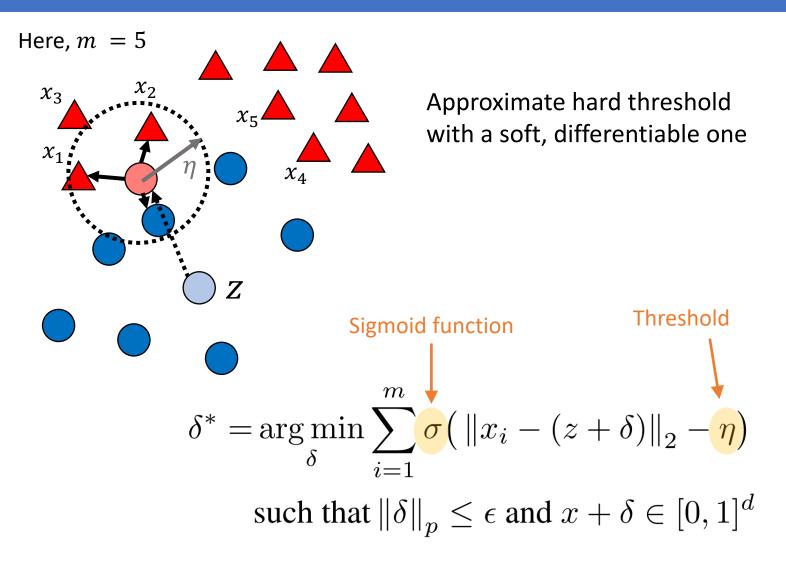
 a set of m nearest
 neighbors from a different
 class, {x_i}
 - Set up as a constrained optimization problem



- We want to ignore samples that are too far away by setting a threshold
- But hard threshold is not differentiable

• Our gradient-based attack

- Main idea: move z towards a set of m nearest neighbors from a different class, {x_i}
- Set up as a constrained optimization problem
- Use sigmoid as a soft threshold
- \circ Choose η to be mean distance to k-th neighbor



Chawin Sitawarin

Results on kNN

• kNN uses cosine distance with k = 75 on MNIST dataset

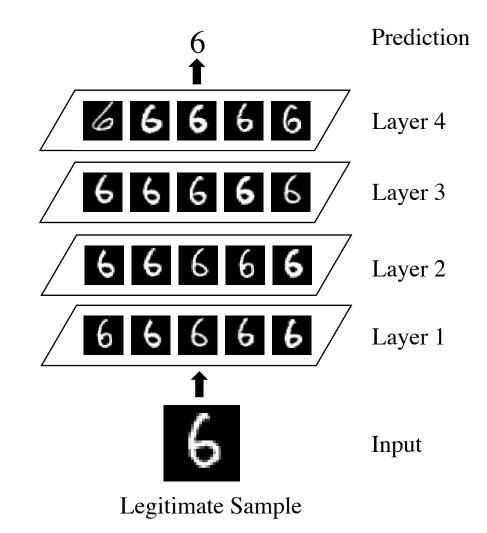
Attacks	Accuracy (%)	Mean Perturbation (L ₂)
No Attack	95.74	-
Mean Attack	5.89	8.611
Our Gradient Attack	9.89	6.565

Most have perceptible / semantic perturbation

DLS '19 (IEEE S&P)

Deep k-Nearest Neighbor

- Proposed by Papernot & McDaniel '18
- Essentially, kNN on outputs of multiple layers of a neural network
- Simple scheme that offers some interpretability
- Can detect out-of-distribution samples and adversarial examples to some degree



DLS '19 (IEEE S&P)

- Baseline: mean attack

 Same as kNN
- Our gradient-based attack
 - Similar to our gradientbased attack on kNN

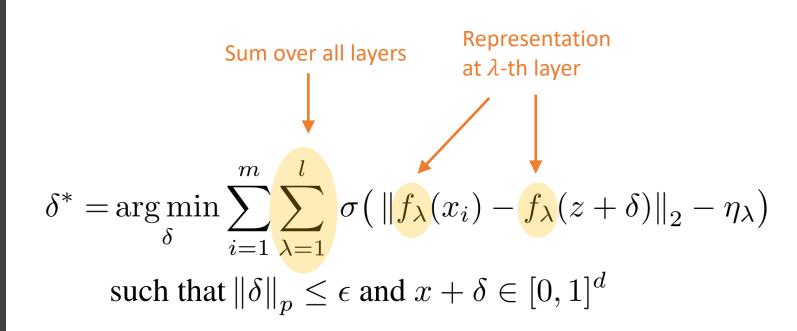
Gradient-based attack on kNN

$$\delta^* = \arg\min_{\delta} \sum_{i=1}^m \sigma \left(\|x_i - (z+\delta)\|_2 - \eta \right)$$

such that $\|\delta\|_p \le \epsilon$ and $x + \delta \in [0,1]^d$

DLS '19 (IEEE S&P)

- Our gradient-based attack
 - Similar to our gradientbased attack on kNN
 - Instead of distance in the pixel space, we consider distance in the representation space
 - $\,\circ\,$ And sum over all the layers



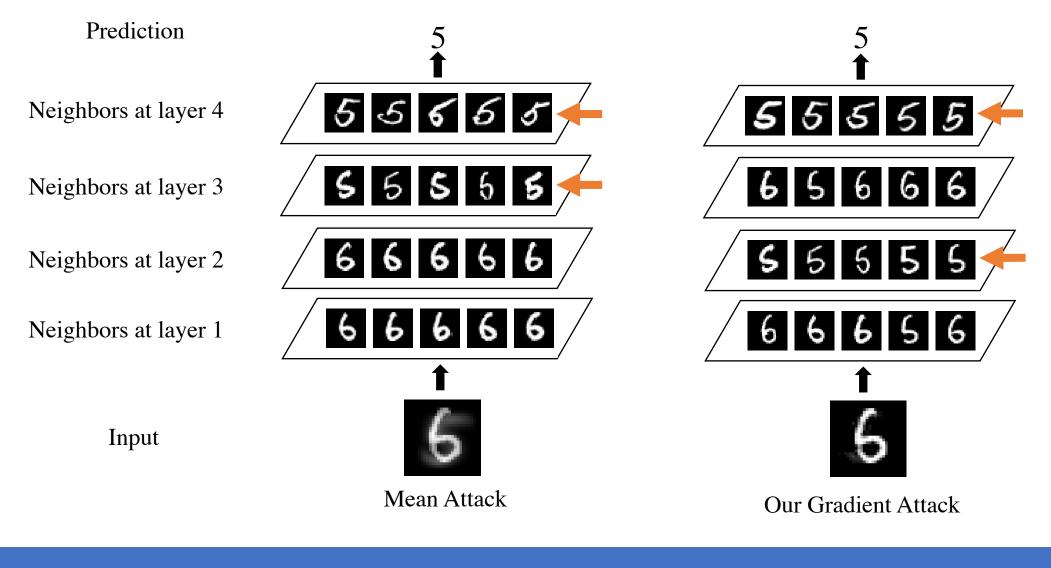
DLS '19 (IEEE S&P)

Results on DkNN

• We use the same network and hyperparameters suggested by Papernot & McDaniel '18

Attacks	Accuracy (%)	Mean Perturbation (L ₂)
No Attack	98.83	-
Mean Attack	13.13	4.408
P&M'18 Attack	16.02	3.459
Our Gradient Attack	0.00	2.164

Results on DkNN

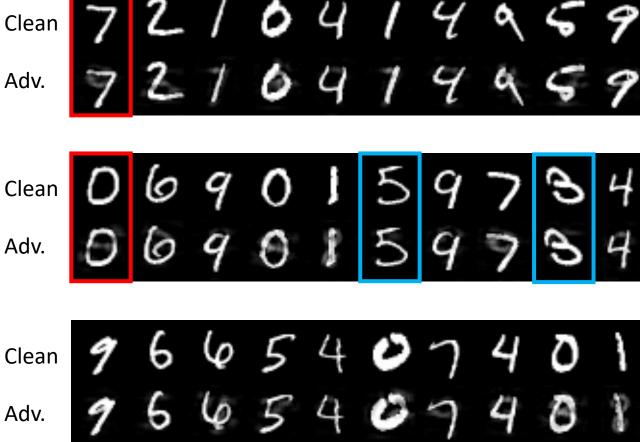


Chawin Sitawarin

DLS '19 (IEEE S&P)

Results on DkNN

Adv.



- Some perturbations have semantic meaning
- But some are imperceptible
- Suggests that L2-norm is not always a good metric
- Suggests that there is some hope for the defense

DLS '19 (IEEE S&P)

Credibility

- DkNN can output a *credibility score* for a give input
- It can be used to filter out adversarial examples and out-ofdistribution samples
- Promising but not very effective currently

Some adversarial examples have a high credibility score
 Some clean samples have a low credibility score

• We refer to paper for more details

Conclusion

- We propose an attack on kNN and DkNN
- Nonetheless, they appear to be more robust compared to other algorithms out of the box

• Requires larger perturbation

o Some perturbation also has semantic meaning

• Improving the DkNN

 Ongoing work: DkNN on representations of a robust network (e.g. adversarially trained networks)

• More robust variants of kNN (e.g. weighted voting)

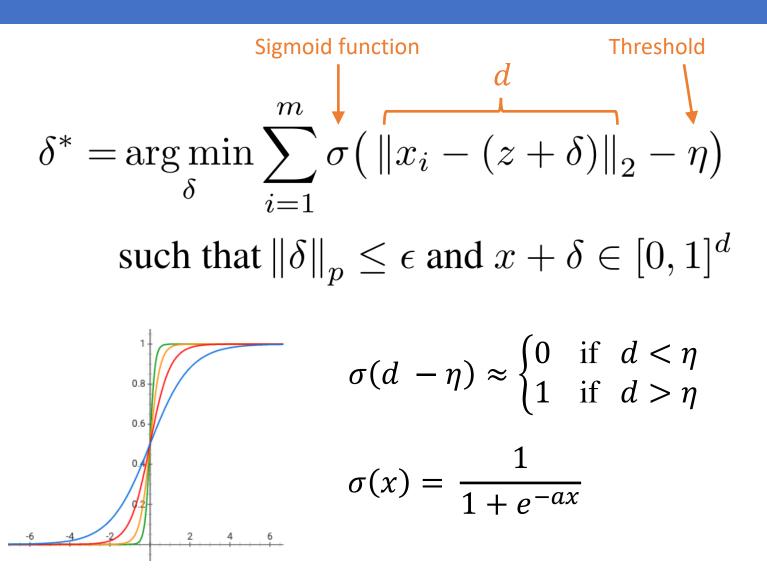
Extra Slides

Chawin Sitawarin

DLS '19 (IEEE S&P)

Sigmoid

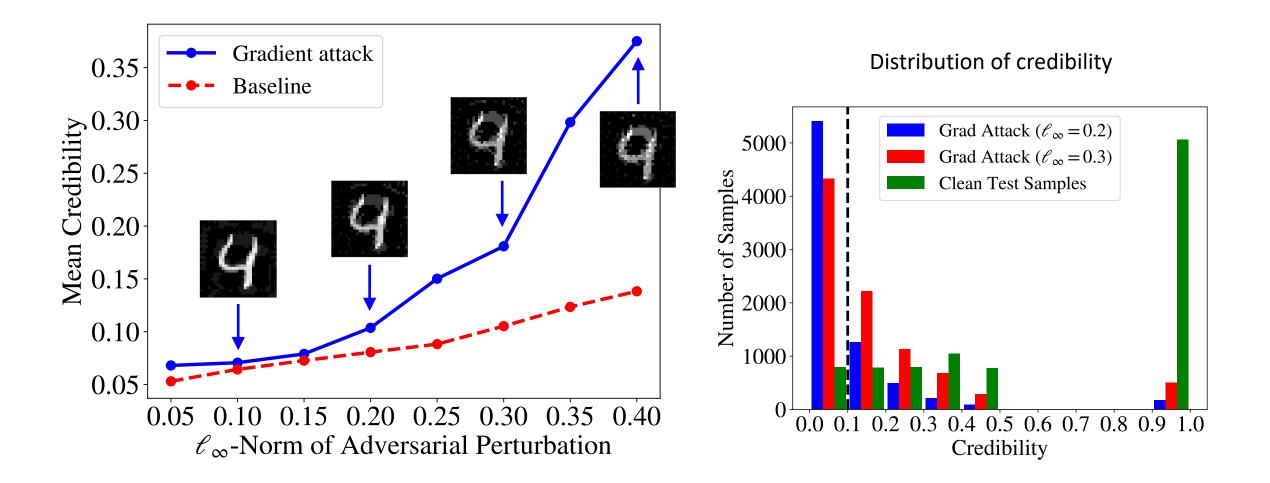
- Gradient-based attack
 - Main idea: move z towards a group of m nearby samples (x_i) from a different class
 - Set up as a constrained optimization problem
 - Use sigmoid as a soft threshold
 - \circ Choose η to be mean distance to k-th neighbor



Chawin Sitawarin

DLS '19 (IEEE S&P)

Credibility



On the Robustness of Deep k-Nearest Neighbor 21

Chawin Sitawarin

DLS '19 (IEEE S&P)