Countering Double-Spend Attacks on Bitcoin Fast-Pay Transactions

John P. Podolanko, Jiang Ming

Department of Computer Science and Engineering

University of Texas at Arlington

Email: {john.podolanko | jiang.ming} @uta.edu

Abstract—Bitcoin is a Proof-of-Work-based payment system
that does not rely on a trusted authority. As its popularity
grows, more businesses are starting to accept it as payment,
including services like fast food restaurants and vending ma-
chines that must deliver goods soon upon payment. Unfor-
tunately, these fast pay scenarios are vulnerable to fraudulent
double-spending of Bitcoins. To protect consumers from having
to cover the costs of these attacks, there is a growing need
to find countermeasures to such attacks that are scalable and
realistic to deploy. Several possible countermeasures have been
proposed in prior work but not evaluated carefully. In this
paper, we analyze these countermeasures and simulate their
effects in a scaled Bitcoin P2P network using the Shadow
framework. We find that integrating several of these coun-
termeasures into an enhanced observer can be effective in
detecting and alerting a vendor to an incoming double-spend
attack in less than 28 seconds on average in our model.

1. Introduction

Bitcoin is a digital currency with over US $16.4 billion
in circulation and over $57 million in daily exchanges as of
Jan. 1, 2017 [1]. It offers significant benefits to consumers
and vendors, such as privacy and low cost for processing
compared with credit cards. Bitcoin removes the reliance on
a trusted third party to conduct transactions by implementing
a Proof-of-Work (PoW) concept that is integrated into a pub-
lic peer-to-peer (P2P) network [2]. It allows users to mine
digital coins by performing calculations on block chains
and to exchange digital coins through the use of digital
signatures and time stamps aimed at preventing double-
spending.

Bitcoin is particularly suited to slow-pay scenarios, in
which the vendor delivers the goods only after the network
confirms the transaction as correct. As Bitcoin continues
to grow, however, so does its practical use in fast-pay sce-
narios, like ATM withdraws, vending machines, and other
point-of-sale transactions where a fast delivery of goods is
expected after payment. Unfortunately, it takes 10 minutes
on average [3] to confirm that a Bitcoin transaction is not
a double-spending attack, in which the attacker spends the
same Bitcoins repeatedly and only one vendor actually gets
the money. Recent research [3], [4], [5], [6], [7] has shown

Matthew Wright
Center for Cybersecurity
Rochester Institute of Technology
Email: matthew.wright@rit.edu

that double-spending attacks on fast payments are not only
possible, but also significantly less costly to the attacker than
originally thought. These attacks cost businesses money,
and such costs are very likely to be passed down to con-
sumers. Additionally, businesses are also likely to limit the
maximum amount for each fast-pay transaction, and some
potential fast-pay vendors will not accept Bitcoin at all,
further harming consumers who seek the benefits of Bitcoin.

A few countermeasures to these attacks have been pro-
posed by Karame et al. [3], [4] and Bamert et al. [5],
such as communicating double-spending alerts among peers,
inserting observers into the network, implementing a lis-
tening period, blocking incoming connection requests, and
inspecting propagation depth of transactions. We know of no
work, however, to analytically or experimentally validate or
compare these ideas.

The purpose of our research is to investigate the effec-
tiveness of these proposed double-spending countermeasures
and their impacts on the performance, anonymity, decen-
tralization, and other aspects of Bitcoin. We also explore
whether some of the proposed ideas can be combined for a
more effective solution.

This paper makes the following contributions:

1) We perform an analysis of representative countermea-
sures proposed in related works.

2) We use the modified Bitcoin code to conduct simula-
tions in the Shadow framework [8] to determine the
effectiveness of these defenses and the impact that the
implementations have on individual client and network
performance. We find that these modifications to the
individual clients drive up CPU utilization by 63%.

3) We propose using a hybrid variation of the observer
countermeasure together with deeper inspection of trans-
action details for greater effectiveness against double-
spending attacks. We find that introducing new, special
nodes called enhanced observers (ENHOBS) into the
network so that they make up 2% of the total number
of online nodes can alert vendors to a double-spending
attack in 22 seconds on average.

2. Background

Bitcoin is an electronic P2P payment system that re-
moves the need for trusted third parties [2]. This is ac-

complished through the use of cryptographic Proof-of-Work
(PoW) in the conduction of financial transactions. The cur-
rency exchanged between peers is Bitcoins (BTCs). Each
BTC has a unique Bitcoin address stored in the owner’s
digital wallet. These addresses are run through a hashing
function that incorporates the BTC owner’s private key and
the public key of the recipient of the BTCs to produce a
new Bitcoin address designating the recipient as the new
owner. In other words, the coin’s owner digitally signs the
hash of the previous transaction through which the coin was
received combined with the next owner’s public key.

Every Bitcoin transaction is broadcasted to all peers, and
each transaction is verified upon receipt [2]. Verification
involves ensuring that the transaction is properly formed.
Peers must also verify that the BTCs have not been previ-
ously spent. That requires checking the transaction against
the blocks in the block chain. Once verified, the transaction
is locally stored in the peers’ memory pools, and all peers
work on constructing a block.

Bitcoin blocks contain several transactions that get
broadcast to all peers in the network [2]. Blocks are gener-
ated by incorporating a random nonce value into the hash
function along with a Merkle hash of all previous transac-
tions [3]. If the resulting hash does not begin with a special
number of zero bits, the function is repeated with a different
nonce value each time until a valid hash is generated. The
number of leading zero bits is determined by the required
difficulty of the next transaction block which is determined
by the difference in timestamps between the current block
and its predecessor. This difficulty requirement is used to
maintain an average of 10 minute intervals between con-
firmed transaction blocks, and it is also the most significant
reason Bitcoin is resistant to rogue block chains. Once a peer
on the Bitcoin network finds a valid hash, it gets broadcast
with the nonce to all other peers and is publicly verifiable.
As of January 2017, the finder mines 12.5 new BTC as
a result of producing a valid hash [9], which provides the
incentive to validate the transaction.

Once a transaction appears in a valid block, it is con-
firmed in all but a few cases. Those cases are known as forks
in the block chain. In the event two different mining pools
simultaneously discover valid block hashes for a different set
of transactions, they will both propagate them to the peers.
Some peers will receive the block from one mining pool
first and others will receive the other mining pool’s block
first. As the peers receive the other block, they see that it
doesn’t extend their current block chain and disregards it.
This is resolved by whichever side of the fork happens to
discover the hash for the next block first. As that new block
is broadcast to all peers, the other side accepts the new block
because it extends their block chain, and then they discover
the fork which is quickly remedied. When that happens,
some transactions from the dead side of the fork may be
lost. It is for this reason, Bitcoin recommends waiting for a
few blocks to be added to the block chain before delivering
goods or services.

2.1. Bitcoin and Double-Spending

In traditional slow-pay Bitcoin, a double-spending attack
would fail, because honest peers would only accept the first
transaction it received. To overcome this, and get previously
spent payments to be confirmed, the attacker would need to
have more computational power than the rest of the P2P
network combined.

Due to the increasing popularity of Bitcoin and the
demand for a larger scope of Bitcoin-supported transac-
tions, fast payment services are now being used worldwide.
This poses a risk to fast-pay vendors, however, since these
vendors generally need to provide their goods and services
before receiving confirmation which takes 10 minutes on
average but has been known to take upwards of 40 min-
utes [3]. Since they provide goods and services without
getting confirmation, this opens them up to double-spending
attacks.

Fast-pay, zero-confirmation transactions fundamentally
clash with the very nature of Bitcoin by creating the need
to trust a third party in order to conduct business. Namely,
the vendor must trust that the customer isn’t about to
rip them off. It is for primarily this reason why Bitcoin
advocates and researchers continue to recommend waiting
for confirmation [4], [5], [6]. Still, Bitcoin is flexible and
isn’t limited to just slow-pay transactions. As such, many
vendors feel that the benefits of conducting fast-pay Bitcoin
transactions outweighs the risk of being robbed. To mitigate
potential losses, fast-pay vendors generally adhere to recom-
mendations and only offer Bitcoin as a payment option for
low-value transactions.

To double spend Bitcoins, the attacker first creates two
transactions. The first transaction, T3/, lists the vendor as the
recipient of the BTCs, and the second transaction, T4, lists
another address owned by the attacker as the recipient of the
BTCs. The attacker’s goal is to have the vendor accept Ty
long enough to deliver the goods or services and have the
rest of the network accept T4 so that the attacker keeps the
money. The attacker then sends out both transactions. The
first transaction, Ty, is transmitted directly to the vendor,
while T4 is broadcasted to the rest of the network. For this
to happen, the IP address of the vendor must be known
in order for the attacker to form a direct connection with
the vendor, and the vendor must receive 13y before 14
arrives [5] ensuring that T4 will be automatically dropped
when the vendor eventually receives it.

The other thing that must happen in a successful double-
spend attack is that 7'y must be confirmed in the block chain
first or else 7y will actually be confirmed and that block
will become the accepted block in the network. Given an
equal propagation of both transactions, there is a 50 percent
chance for either transaction to be confirmed. In summary,
this attack requires more nodes working on T4 than on Ty
to increase T'4’s likelihood of being accepted into the block
chain and requires that the vendor only sees 7y . Note that
neighbors of the vendor will likely get Ty first (directly
from the vendor) and thus drop T4 rather than propagate it
to the vendor.

Additionally, there exists another form of double-spend
attack known as the block withholding attack [10], [11] in
which the attacker pools resources to create a block, By,
which contains 73 . In this attack, the attacker blocks all
other connections to the vendor and prevents the vendor
from ever receiving all other blocks confirming 74 while
sending By the moment it is calculated. The attacker essen-
tially creates a fork in the block chain that will eventually be
disregarded since no other mining pools work to extend this
side of the fork [4]. Unlike the previous method, this method
of double-spending can succeed in slow-pay transactions in
which the vendor awaits confirmation.

3. Analysis of Countermeasures

Several prior works have described potential counter-
measures to double-spending attacks against fast pay. In this
section, we briefly analyze these countermeasures.

There is an existing metric for propagation depth built
into Bitcoin transaction messages [12], and Bamert et al. [5]
propose requiring the vendor to wait for a transaction to
propagate a number of steps before accepting it. The notion
is that if few nodes have seen the transaction, it could be
untrustworthy, so greater depth is assumed to be better.
With a chain of malicious nodes, however, an attacker could
simply move 7Ty, along until the propagation depth reaches
the required threshold.

Bamert et al. also propose blocking of incoming con-
nection requests as a countermeasure [S]. This essentially
prevents the attacker from achieving one of the necessary
conditions required to successfully perform a double-spend
attack which is to directly connect to the targeted vendor.
By blocking incoming connection requests, the attacker
cannot establish a direct connection to the vendor from
which to send the vendor 73y unless the vendor actually
sends the attacker a connection request upon joining the
Bitcoin network. To overcome this, the attacker can target
newly joining vendors given that these vendors must still
request connections to other peers to ensure it has the latest
block chain information. The attacker would create several
malicious nodes distributed throughout the network making
it more likely for the vendor to randomly connect to one of
them.

Karame et al. [3] propose a listening period countermea-
sure, in which honest nodes check all incoming transactions
against Ty, for a specified period of time once 7} has been
received. If T4 is discovered within the window, then it
alerts the vendor to the double-spend. This is not likely
to be effective in detecting attacks in the short time it
could take to complete a fast-pay transaction. In particular,
the attacker could delay releasing 7’4 to other nodes long
enough to avoid detection by the vendor within the window,
and the attacker could effectively use multiple malicious
nodes to inject T4 simultaneously and quickly enough that
T4 reaches more mining nodes.

Karame et al. also propose the use of observers [3],
nodes randomly distributed across the P2P network that
forward all transactions to the vendor, thereby increasing

the scope of transactions that can be detected in a listening
period. In other words, if T4 is released in a part of the
network that is far from the vendor but contains an observer,
then the vendor could essentially know about T4 within a
few seconds. This approach is somewhat effective, but it
does not directly prevent the double-spend attack nor the
propagation of T'4. Also, observers can easily be detected
in the Bitcoin network by an attacker analyzing traffic
patterns [13]. This could then allow the attacker to carry
out targeted attacks such as DoS against the observers, re-
enabling double spending.

Finally, Karame et al. propose a peer alert countermea-
sure [3], [4], in which peers conduct a deeper investigation
of conflicting transactions and broadcast alerts to all peers
if a double-spend attack is detected. While Bitcoin has alert
mechanisms in place [14], they are currently unused. This
approach may help to catch double-spenders, but it only
catches them after the act and does nothing to prevent the
attack once detected. Even if the attacker is discovered and
its pseudonym blacklisted, the attacker could effortlessly
create a new pseudonym and try again.

4. Proposal

To build a more effective countermeasure against
double-spending attacks in the fast-pay setting, we propose
introducing enhanced observers (ENHOBS), a hybrid of
observers and the peer alert system. In this scheme, the
ENHOBS will conduct deeper inspections of all transac-
tions received and compare outputs as well as inputs. Once
a double-spend attack is detected, an alert message that
contains both transactions as evidence is sent through the
P2P network. Once an alert is received and verified, any
transactions matching the same inputs are dropped from the
memory pool immediately.

This is different from the observers proposed by Karame
et al. because those observers simply forward all transactions
they receive to the vendor, leaving the vendor to do all the
detective work [3]. In our approach, we have the observers
do the investigation and only broadcast alerts through the
network when a double-spend attack is discovered. This
allows the other non-observer clients to better utilize their
resources for mining and to respond to the alerts in a
much more timely manner. The cost of this approach is the
additional overhead of investigation. The observers proposed
in [3] also generate unique traffic patterns that make them
detectable. Specifically, they only unicast alert messages to
the vendor as opposed to forwarding all incoming broad-
casts. Our ENHOBS forward all incoming transactions and
blocks as would any other client in the Bitcoin P2P network
as well as alert messages so that their traffic patterns are
indistinguishable from other peers in the network.

All other Bitcoin peers only require minimal modifi-
cation to their client source code so that they accept and
process alert messages. In the event an alert message is
received, a peer verifies that the two transactions are indeed
part of a double-spend attack by comparing the inputs and
outputs of both transactions contained in the alert. Once

the alert has been validated, the peer then runs a one-time
scan of all transactions in its memory bank, looking for
the transaction that contains the input that matches the alert
and removes that transaction. If no matching transaction is
found, then nothing changes. This only adds an additional
computing cost of O(T'), where T is the number of trans-
actions that currently reside in the memory bank.

Afterwards, the peer keeps the alert message in memory
for until two new blocks have been appended to the block
chain. We keep this alert in memory in the event that one
of the double-spend attempts happens to arrive after the
alert has been processed. This adds a minimal O(2a) to the
overhead computing cost where a represents the number of
alerts in memory.

To pay for the overhead of ENHOBS, we consider a
subscription-based system to justify their costs of operation.
The ENHOBS will operate as a collective on the Bitcoin P2P
network with all standard clients, and alert messages will be
sent only to the peers who have paid for a subscription to
receive alerts for a low monthly fee paid to the collective in
BTCs. The collective would then fairly distribute the BTCs
to the enhanced observer clients. It is important that the
collective must maintain a minimum number ENHOBS so
that they may detect double-spends and alert the subscriber
base quickly. The only other option would be to have a small
number of altruistic parties absorb these costs for the benefit
of all Bitcoin users.

To summarize our proposal, here is a list of benefits and
potential setbacks that we have considered:

+ Because most of the CPU overhead is performed by the
ENHOBS, subscriber clients incur negligible additional
CPU overhead.

+ Non-subscriber Bitcoin clients
costs—resources or monetary.

+ The Bitcoin fast-pay market could potentially open up
to large-value point-of-sale transactions and attract new
clients.

— It is critical to this system that a balance is found
and maintained between the number of subscribers and
ENHOBS for optimal performance and low cost.

— This system doesn’t address the potential for malicious
intent, and it potentially opens up another attack vector
for those wanting to cheat the ENHOBS system.

incur no additional

5. Experimental Design

To evaluate ENHOBS, we performed simulation exper-
iments in the Shadow simulation framework [8]. Building
on the Bitcoin software client, bitcoind v0.12, we wrote
a new plug-in to Shadow and made the modifications to
implement our proposal. We simulated 3,000 Bitcoin client
nodes, which is roughly 20% of the size of the Bitcoin net-
work during peak capacity [9], for a total of seven simulated
days. Although network churn was not simulated, latency
between nodes and computing power were simulated via a
configuration file that was previously written for the Shadow
plug-in for Bitcoin [15] to match actual Bitcoin node data.
However, we modified that plug-in to be compatible with

bitcoind v0.12. The setup also contained a single mod-
ified node that behaved normally with the exception that it
also introduced a new double-spend attack into the network
every twelve minutes, i.e. five attacks per simulated hour.
Average CPU utilization was recorded for the entire duration
of the simulation.

We first studied the unmodified Bitcoin client, labeled
as “Vanilla,” which generated our control data to which
all other data was compared. In the first experiment of
our proposal, labeled as “All ENHOBS,” we modified the
client software by adding ENHOBS functionality to all
3,000 clients on top of their normal duties and conducted
a seven-day experiment in order to accurately assess the
performance hit that each client would take on average for
comparative purposes. The ENHOBS functionality consists
of deeper transaction inspection, alert generation, processing
of any received alerts which includes dropping any double-
spend transactions in the memory pool and storing the alert
in memory until two new blocks have been appended to
the block chain. Network traffic was monitored in order
to confirm the existence of alert messages on the network,
and time stamps were logged on each client once a double-
spend alert had been processed. This also generated a control
data set in regards to double-spend detection and response
time to which the results of the next two experiments were
compared.

In our next two experiments, we removed ENHOBS
functionality from all 3,000 clients and introduced special
ENHOBS client nodes in addition to the 3,000 vanilla
clients. These skinny ENHOBS clients included all of the
ENHOBS functionality introduced in “All ENHOBS” but
were stripped of all other non-essential functionality. In
other words, the skinny ENHOBS clients would enter trans-
actions into the memory pool and update the block chain as
new blocks were received, but it would not perform hashing
functions to the transactions in memory, nor would it send
out any network traffic with the exception of alert messages.
The first of these experiments, labeled as “1% Skinny,”
involved saturating the network with 30 skinny ENHOBS
clients which is equal to 1% of the number of vanilla clients.
The second experiment, labeled as “2% Skinny,” involved
saturating the network with 60 skinny ENHOBS clients
which is equal to 2% of the number of vanilla clients.

It is worth noting that by removing all non-essential
functionality in the skinny ENHOBS, they have unique,
identifiable traffic patterns — alerts being the only outgoing
traffic — that can be detected by an adversary who could
attempt a denial-of-service attack to prevent the ENHOBS
from alerting a potential victim of a double-spend attack.
For this reason, our final two experiments add far ENHOBS
clients with no Bitcoin functionality stripped so they may
blend into the network by broadcasting transactions and
blocks as well as alerts. These experiments add 60 fat
ENHOBS clients (2% of the total number vanilla clients)
and 120 fat ENHOBS clients (4% of the total number
of vanilla clients) to the network. These experiments are
labeled as “2% Fat” and “4% Fat” respectively.

100
96.0
80
S 74.2
s
= 60
= 59.0
= 456 i 498
2 40- '
2 2 30.7
E-) ' 27.3
201 l 16.7
4.61
04 3.03
T T
Vanilla All ENHOBS
Figure 1. Client CPU utilization comparison
6. Results

To assess the feasibility of introducing observer func-
tionality in all clients, we evaluate the average CPU per-
formance of all clients on the network before and after
implementing the observer functions as well as the detection
rate. Our implementation of observer functionality yields
a detection rate of 100% on all clients either from direct
detection or from receiving a double-spend alert message. In
comparing the CPU utilization results between Experiments
0 and 1, depicted in Figure 1, our results show that adding
the deep transaction inspection capabilities necessary for all
Bitcoin clients to behave as observers increases the number
of CPU cycles by an average of 63.1% causing the average
CPU utilization to jump from 31.1% to 50.6%. Although
the increase in CPU cycles was expected, these results have
a negative impact on all clients - more specifically to any
clients who don’t conduct fast pay transactions.

In addition to CPU utilization, Experiment 1 yielded
additional results depicted in Figure 2, which shows the
distribution of the average time it takes for clients to detect a
double-spend attack from the time the attack was introduced
into the network either by direct detection or from receiving
a double-spend alert from a peer. These results confirm our
hypothesis that adding observer functionality can mitigate
double-spending in a timely manner with the overall average
response time being 15.03 seconds.

Considering the negative performance impact of imple-
menting ENHOBS functionality on all clients, the results of
Experiments 2 and 3, also depicted in Figure 2, show that
introducing special clients with ENHOBS-only functionality
into the network up to a certain saturation point is an effi-
cient and effective solution. By introducing just 30 skinny
ENHOBS into the network of 3,000 nodes, our results show
that clients receive double-spend alerts in an average of
35.04 seconds and a median time of 34.32 seconds. If
we double that number of skinny ENHOBS, we bring the
average and median times for all clients to receive double-

100 ~

D 80- 80.8
c
o
o
» 604 B}
=] 54.6
o 48.9
£ 40
g 36.0 =343
5 29.6
g 204 20.2 19.2 = 205
© 14.3 12.6
= 8.94 5.05 l
T T T
All ENHOBS 1% Skinny 2% Skinny

Figure 2. Time for clients to detect and process double-spends using skinny
ENHOBS

100
88.5
—~ 80-
[%2]
©
C
o
[5)
& 60 . 61.2
p= 54.6 54.9
£
£ 404 41.
= % ° 35.1
- .
5 29.6 o
= 24.6
& 20- © 1205 23.2
A 12.6 J 14.9
l 3.01 6.10 4.44
o)
T T T
2% Skinny 2% Fat 4% Fat

Figure 3. Time for clients to detect and process double-spends using fat
ENHOBS

spend alerts down to 22.04 seconds and 20.48 seconds
respectively.

In order to evade detection by an adversary, ENHOBS
must endure the additional performance requirements of the
typical client, and the results of Experiments 4 and 5 — where
fat ENHOBS are introduced into the network — are depicted
in Figure 3. These results show it takes more than twice
the number of fat ENHOBS than skinny ENHOBS to yield
similar results. By introducing 60 fat ENHOBS into the
network of 3,000 nodes, our results show that clients receive
double-spend alerts in an average time of 42.76 seconds and
a median time of 40.97 seconds. Doubling that number of
fat ENHOBS brings the average and median times for all
clients to receive double-spend alerts down to 27.87 seconds
and 24.61 seconds respectively.

7. Discussion and Future Work

To implement our proposals successfully in the real
Bitcoin network, we still need to address how to find a
balance between the number of observer nodes, their as-
sociated performance (some may use more resources than
others), and the number of alert subscribers so that it is
beneficial and cost-effective for all parties. We can’t ask
Bitcoin to allow observers to mine BTCs upon detecting a
double-spend the way everyone else does when hash farming
without significantly altering the core functions of the source
code. In addition to that, Bitcoin was designed to have a
mining cap which will take place in a few years [9], meaning
no more BTCs can be mined.

To preserve the core design of Bitcoin, we considered
a solution similar to a mining community which involves
creating a community of ENHOBS governed by an ad-
ministrator that would require some type of Proof-of-Work
(PoW) to ensure all ENHOBS are actually performing the
work of looking for double-spend attacks. The administrator
would use a subscription model where fast pay vendors
(subscribers) pay the administrator a fair number of BTCs
on a month-to-month basis which gets fairly distributed
among the community given valid PoW. The amount would
need to be high enough to justify the ENHOBS’ cost of
computing and low enough so that the cost of the sub-
scription is not higher than the expected loss from double-
spend attacks. This becomes easier to accomplish as more
vendors subscribe to the community because as the number
of subscribers increases to share the cost, the lower that
subscription cost would be to each of them. Fast pay vendors
could also add very small service fees to their transactions
to fund the subscription.

As for the number of ENHOBS, it would be need to be
subjected to a few controls. Adding more ENHOBS would
increase the price of subscription and would offer marginally
or negligibly better average response times as the number
increases. The number of ENHOBS would also depend on
network dynamics as nodes join or leave the system, so an
appropriate number would need to be maintained.

Implementing the proof-of-work for ENHOBS could be
done using a collective log verification system, in which
logs are matched against the logs of a few other observers
that were active during the same time frames. If only minor
discrepancies are noticed, it can probably be accepted. If
major discrepancies are found such as large blocks of trans-
actions missing or missed double-spends, then the system
could penalize or even blacklist the ENHOBS. We must also
consider intentional sabotage similar to the block withhold-
ing attack [11], where a malicious node in the community
could withhold any detection of a double-spend attack.

The subscription model, however, assumes that there is
call for an ENHOBS market, which there isn’t a cry for.
As such, we believe that a small number of altruistic parties
can ensure the health of the ENHOBS system by absorbing
the costs while the vendors and other Bitcoin clients pay
nothing. Some positive externalities could be captured by
large Bitcoin players as well similar to Google as they invest

in the overall health of the web. It works for Tor given that
there is no profit in hosting relay nodes [16].

8. Related Works

Karame et al. proposed three of the countermeasures
we considered in two papers [3], [4]. They backed up
their proposals with sound theory and accurate mathematical
equations. Their attack model was also very generalized in
scope so that it didn’t require very specific conditions to
succeed. Their analyses of the inner workings of Bitcoin as
well as user practices allowed them to model an attack that
challenges some of the founding principles and claims of
Bitcoin.

Bamert et al. presented the other two countermeasures
considered in this paper to address the double-spending
attack in fast pay transactions. They claim that these coun-
termeasures could diminish the success of such attacks to
less than 0.09% [5] by having the vendor connect to a
large random sample of nodes in the Bitcoin network. The
vendor then requests transaction data from each of them
while denying incoming connections, thereby preventing an
attacker from sending a fraudulent transaction to the vendor.
This was only proposed in theory, and our analysis and
experiments have expanded on this.

Andrychowicz et al. address the malleability problem
present in Bitcoin transactions in [6]. They pose an experi-
ment that demonstrates a high success rate for the attacker,
and it is also the officially-given reason why MtGox sus-
pended trading in February 2014.

Decker and Wattenhofer analyze Bitcoin’s multi-hop
broadcasting used to propagate transactions and blocks and
update the ledgers [12]. Their analysis verifies the assump-
tion that block chain forks are primarily caused by propaga-
tion delay in the network and are the main reason for ledger
inconsistencies. They further go on to experiment and show
that block chain forks can be avoided.

Meirs et al. propose an extension to Bitcoin called
Zerocoin that will allow full anonymity in Bitcoin transac-
tions through standard cryptographic assumptions without
introducing trusted third parties [7]. Zcash is the real-world
deployment of this idea, so it is interesting to consider
whether and how it will be as effective in the marketplace as
Bitcoin has been, as well as if there are unforeseen security
risks in it as well.

The double-spend attack is possible largely due to lack
of anonymity in practice. Many fast pay vendors publicly
link their pseudonyms to their identities which give the
attacker the ability to social engineer information relevant
to the vendor’s Bitcoin node. With this information, the
attacker can attempt to make direct connections which are
crucial to successful double-spend attacks. In two works,
Biryukov et al. challenge the anonymity of Bitcoin users
- even over the Tor network. They first found an effective
means to de-anonymize users that links pseudonyms to the
source IP addresses of transactions [17]. They then showed
how using Bitcoin over Tor actually creates an attack vector

for man-in-the-middle attacks, granting the attacker full con-
trol of information flows between all users running Bitcoin
over Tor [18]. Their proposed countermeasures, however,
offer little detail.

The true anonymity of Bitcoin users has been called
into question repeatedly due to the fact that all transactions
are publicly known and can be analyzed. Moser states that
users don’t have anonymity but rather “pseudonymity” [19].
Moser also concluded that not all digital wallets provide
the same level of anonymity, and many Bitcoin exchanges
link personal information to Bitcoin addresses. Through
transaction graphs, Moser measured the difficulty to find
direct connections relating input and output in a transaction.
However, Moser’s work only analyzed three services out of
dozens of possibilities.

Likewise, Ober, et al. found that by merging information
regarding public Bitcoin addresses along with simultaneous
usage generated concern that anonymity could be com-
promised in Bitcoin [13]. On the other hand, they found
dynamic effects that increase anonymity.

9. Conclusion

Because Bitcoin’s design only guarantees confirmation
of a transaction after it has been hashed into the block
chain [2], it is currently better suited for slow-pay trans-
actions, as fast-pay vendors are vulnerable to double-spend
attacks.

In this paper, we analyzed representative proposed coun-
termeasures and have shown that an attacker still has options
that allow it to circumvent these countermeasures. Based on
this analysis, we proposed enhanced observers (ENHOBS),
a hybrid approach that combines extends key ideas from
prior work. We simulated ENHOBS and demonstrated that
we can effectively counter the double-spend attack in fast
pay transactions with reasonable overheads in terms of the
number of ENHOBS in the network.

Vulnerabilities to attack can significantly hinder the
growth of any system, and Bitcoin is no different. Bitcoin’s
vulnerability to double-spending has likely had a negative
effect on its ability to acquire new vendor clients. However,
the system-wide implementation of these countermeasures
could potentially open the doors to a much larger network
of vendors that handle large-value point-of-sale transactions
such as supermarkets, gas stations, and even retail stores.

Acknowledgments

The authors would like to thank the reviewers for pro-
viding great feedback. We thank the University of Texas at
Arlington and the Department of Education for supporting
us with a Graduate Assistance in Areas of National Need
(GAANN) fellowship. This work was also supported in part
by NSF awards number CNS-1423163 and CNS-0954133 as
well as Rochester Institute of Technology and the Signature
Interdisciplinary Research Areas grant.

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

“Blockchain info,” https://blockchain.info/, accessed: 2017-01-01.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008, accessed: 2017-01-01.

G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending
attacks on fast payments in bitcoin,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS’12).

G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Cap-
kun, “Misbehavior in bitcoin: A study of double-spending and ac-
countability,” ACM Transactions on Information and System Security
(TISSEC), vol. 18, no. 1, June 2015.

T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welton,
“Have a snack, pay with bitcoins,” in Proceedings of the 13th IEEE
International Conference on Peer-to-Peer Computing.

M. Andrychowicz, S. Dziembowski, D. Malinowski, and ukasz
Mazurek, “On the malleability of bitcoin transactions,” in Proceedings
of the 2015 Conference on Financial Cryptography and Data Security
(FC 2015).

I. Meirs, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anony-
mous distributed e-cash from bitcoin,” in Proceedings of the 2013
IEEE Symposium on Security and Privacy (S&P’13).

R. Jansen and N. Hopper, “Shadow: Running tor in a box for accurate
and efficient experimentation,” in Proceedings of the 2012 Network
and Distributed System Security Symposium (NDSS’12).

“Bitcoin wiki,” https://en.bitcoin.it/wiki/, accessed: 2017-01-01.

A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering
with the delivery of blocks and transactions in bitcoin,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS’15).

S. Bag, S. Ruj, and K. Sakurai, “Bitcoin block withholding attack :
Analysis and mitigation,” IEEE Transactions on Information Foren-
sics and Security, vol. PP, no. 99, pp. 1-12, November 2016.

C. Decker and R. Wattenhofer, “Information propagation in the
bitcoin network,” in Proceedings of the 13th IEEE International
Conference on Peer-to-Peer Computing.

M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and
anonymity of the bitcoin transaction graph,” Future Internet, vol. 5,
no. 2, pp. 237-250, May 2013.

H. Finney, “The finney attack,” https://bitcointalk.org/index.php?
topic=3441.msg48384#msg48384.

“Shadow plugin: Bitcoin,” https://github.com/shadow/
shadow-plugin-bitcoin, accessed: 2017-01-01.

S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Identifying proxy
nodes in a tor anonymization circuit,” in Proceedings of the 2008
IEEE International Conference on Signal Image Technology and
Internet Based Systems (SITIS "08).

A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymization
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security
(CCS’14).

A. Biryukov and I. Pustogarov, “Bitcoin over tor isn’t a good idea,”
in Proceedings of the 2015 IEEE Symposium on Security and Privacy
(S&P’15).

M. Moser, R. Bohme, and D. Breuker, “An inquiry into money
laundering tools in the bitcoin ecosystem,” in Proceedings of the 2013
IEEE eCrime Researchers Summit.

