Practical Solutions for Format Preserving Encryption

Authors: Mor Weiss, Boris Rozenberg, and Muhammad Barham
Presented by Boris Rozenberg (borisr@il.ibm.com)

May 21, 2013
Talk Outline

• Motivating example
• Encryption: background
• Format Preserving Encryption (FPE):
 – Simple constructions
 – Better constructions:
 • Representing general formats
 • Encrypting general formats
 – Dealing with large formats
 – Evaluation
• Concurrent Work
• Conclusion
Motivating Example

Age
Former and present illnesses
Prescribed medication
Encryption
(keeping data private)
Encryption Schemes

• A triplet $\Pi = (KeyGen, Enc, Dec)$ of algorithms
 – Π associated with 3 sets:
 • \mathcal{K}: domain of valid keys
 • \mathcal{M}: message domain
 • \mathcal{C}: ciphertext domain.
 – $KeyGen$ generates random key from \mathcal{K}
 – Enc on message (plaintext) $m \in \mathcal{M}$ and key $k \in \mathcal{K}$ outputs ciphertext $c \in \mathcal{C}$
 – Dec on ciphertext $c \in \mathcal{C}$ and key $k \in \mathcal{K}$ outputs message $m \in \mathcal{M}$

• Deterministic encryption: only $KeyGen$ is randomized
 – Everything deterministic once key is chosen

• Assumed adversary knows everything but key

© 2015 IBM Corporation
Encryption Schemes: Required Properties

• A triplet \(\Pi = (\text{KeyGen}, \text{Enc}, \text{Dec}) \) of algorithms

• Correctness: for every \(k \in \mathcal{K} \) and every \(m \in \mathcal{M} \)

\[
\text{Dec}(k, \text{Enc}(k, m)) = m
\]

• Security:
 – Many security notions
 – Intuitively, ciphertext \(c \) reveals (almost) no information on message \(m \)
 • Even if adversary has prior knowledge
 – Achieved by random 1:1 functions

• For usability, all algorithms must be efficient
Security-Efficiency Tradeoffs

\[\text{Enc}(k, m) = m \]
for every key \(k \)

\[\text{Enc}(k, \cdot) \] applies a random 1:1 function
Format Preserving Encryption
(encrypting to “acceptable” formats)
Format Preserving Encryption (FPE)

- Standard encryption maps messages to “garbage”
 - May be impossible to store ciphertext in same tables
 - Applications using data may crash
- Need some plaintext properties to be preserved
- FPE: *Deterministic* encryption scheme $\Pi = (\text{KeyGen}, \text{Enc}, \text{Dec})$
- with additional property $M = C$
- Ciphertexts have the same format as plaintexts!
 - Social security number (ssn) mapped to legal ssn
 - Credit card number (ccn) mapped to legal ccn
 - Address mapped to legal address
 - Etc...
Example: The DES Encryption

DES is format-preserving!
FPE Schemes For General Formats: Simple Solution

• Known encryption schemes are FP for *fixed, specific* formats
 – Usually, bit strings of fixed length

• What about other formats?
 – For CCNs, message space $\subseteq \{0,1, ..., 9\}^{16}$
 – No known encryption for this message space!

• Can use *cycle-walking* [Black-Rogaway’02]
 “if at first you don’t succeed, you pick yourself up and try again”
 – Use “standard” encryption with $\{0,1, ..., 9\}^{16} \subseteq \mathcal{M}$
 – Repeat until ciphertext in $\{0,1, ..., 9\}^{16}$
Cycle-Walking

Message space $\mathcal{M} = 2^{128}$

Valid CCNs $\{0, 1, \ldots, 9\}^{16}$
Cycle-Walking: Pros and Cons

• Pros:
 – Use “off-the-shelf” encryption schemes
 • One design for all formats
 – Known encryption schemes are provably secure

• Cons:
 – Average efficiency depends on ratio between format-size and message domain size
 • Need to repeat \(\frac{\text{format size}}{|\mathcal{M}|} \) times on average
 – No bound on actual efficiency
Improved FPEs for Numeric Domains

• Several known schemes for numeric domains
 – Considered due to (in)efficiency of cycle walking

• [Bellare et al. ’09] construct integer-FPE: FPE with $\mathcal{M} = \{0,1, \ldots, M - 1\}$

What about non-numeric domains?
From Integer-FPE to General-Format FPE

• Can base general-format FPE on integer-FPE using Rank-then-Encipher (RtE): [Bellare et al. ’09]
 – Message space \mathcal{M} arbitrarily ordered: rank: $\mathcal{M} \to \{0,1,\ldots,M\}$
Warm-Up Example

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
<th>7</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper case</td>
<td>lower case</td>
<td>digit</td>
<td>upper case</td>
</tr>
</tbody>
</table>

idea: compute location in lexicographic order

index each character

23 24 7 0

rank calculated by scaling and summing the indices

23 \cdot 26 \cdot 10^{26} + 24 \cdot 10^{26} + 7 \cdot 26 + 0

gives the \text{Sum-and-Scale} method

1234 = 1 \cdot 10 \cdot 10 \cdot 10 + 2 \cdot 10 \cdot 10 + 3 \cdot 10 + 4

© 2015 IBM Corporation
Ranking General Formats: Simple Solution

• Want: efficient rank: $\mathcal{M} \rightarrow \{0, 1, \ldots, M - 1\}$

• Can rank every format \mathcal{F} defined by
 – Length ℓ
 – Sets $\Sigma_1, \ldots, \Sigma_\ell$ of “legal” characters in locations 1, \ldots, ℓ.

• Simple solution:
 – Divide \mathcal{M} to subsets $\mathcal{M}_1, \ldots, \mathcal{M}_k$
 – \mathcal{M}_i defined by $\ell_i, \Sigma_1^i, \ldots, \Sigma_\ell^i$ How to define efficiently?!
 – Rank and encryption of $m \in \mathcal{M}_i$ computed in relation to \mathcal{M}_i
Simple Solution: Security Analysis

Simple solution:
- Divide \mathcal{M} to subsets $\mathcal{M}_1, \ldots, \mathcal{M}_k$
- \mathcal{M}_i defined by $\ell_i \Sigma_1^i, \ldots, \Sigma_\ell^i$
- Rank and encryption of $m \in \mathcal{M}_i$ computed in relation to \mathcal{M}_i

Security is compromised:
- Ranking computed in every \mathcal{M}_i separately
- So $m \in \mathcal{M}_i$ always encrypted to ciphertext in \mathcal{M}_i
- Rarely the case for random 1:1 functions $f: \mathcal{M} \rightarrow \mathcal{M}$, especially for large k
Simple Solution: **Practical** Security

Simple solution:
- Divide \mathcal{M} to subsets $\mathcal{M}_1, \ldots, \mathcal{M}_k$
- \mathcal{M}_i defined by $\ell_i \sum^i_1, \ldots, \Sigma^i_\ell$
- Rank and encryption of $m \in \mathcal{M}_i$ computed in relation to \mathcal{M}_i

- $\mathcal{M} =$ names format:
 - 2-4 words
 - Every word upper-case followed by 1-10 lower-case
- \mathcal{M}_i defines number of words + number of letters in each word
- “John Smith” can encrypt to “Angm Ojkri” but not to “Bar Refaeli”
- If only one of them is possible, adversary knows plaintext for sure

© 2015 IBM Corporation
Optimizing Security-Efficiency Tradeoff

- Cycle walking inefficient since ignores format properties
- Simple solution insecure since preserves “cosmetic” message properties
- Want a “balanced” encryption scheme
 - Take into consider format properties...
 - ...and preserve only them!
 - Need:
 - Framework of representing general formats
 - Method of ranking general formats

© 2015 IBM Corporation
Representing General Formats: Framework

- Define building-blocks and operations
- Building blocks are called “primitives”
 - SSNs
 - CCNs
 - Dates (between minDate and maxDate)
 - Fixed-length strings with index-specific character-sets
- Usually represent “rigid” formats
 - e.g., fixed length
- Can also represent “less rigid” formats
 - Variable-length strings over some alphabet

© 2015 IBM Corporation
Representing General Formats: Framework (2)

- Define building-blocks and operations
- Operations allow constructing compound (and complex) formats from primitives
 - Operations preserve the parsing property: compound format can parse string to ingredients
- Compound formats are called “fields”
- Can construct format \mathcal{F} from “smaller” formats $\mathcal{F}_1, \ldots, \mathcal{F}_k$ by:
 - Union
 - Concatenation:
 - $\mathcal{F} = \mathcal{F}_1 \cdot d_1 \cdot \mathcal{F}_2 \cdot \ldots \cdot d_{n-1} \cdot \mathcal{F}_n, d_1, \ldots, d_{n-1}$ are delimiter characters
 - $\mathcal{F} = \mathcal{F}_1 \cdot \ldots \cdot \mathcal{F}_k$ in some cases
 - Range: $\mathcal{F} = (\mathcal{F}_1 \cdot d)^k, \min \leq k \leq \max$
Constructing Compound Formats: Example

- \(F_1 = \{A, B, \ldots, Z\} \)
- \(F_2 = \) length-\(k \) strings of lower-case letters, \(1 \leq k \leq 10 \)
- \(F_3 = \) SSNs

- Concatenation:
 - \(F_{\text{word}} = F_1 \cdot F_2 \) gives words
 - \(F = F_2 \cdot \ldots \cdot F_2 \), e.g., “abc-def” or “aaaaa-bb”

- Union: \(F = F_1 \cup F_3 \), e.g., “1112233333” or “A”

- Range: \(F_{\text{name}} = (F_{\text{word}} \cdot space)^k \) for \(2 \leq k \leq 4 \) gives names, e.g. “Bar Refaeli” or “Louisa May Alcott”
Ranking General Formats

• Define ranking for building-blocks
• Define ranking for operations
• Automatically gives ranking for compound formats:
 – Parse string to ingredients
 – Delegate ranking of substrings to ingredients
 – Use ranking for operations to “glue” ranks together
Ranking Primitives

- Ranking usually fairly simple:
 - **SSNs:** “basically” 9-digit numbers, remove illegal-SSNs smaller that given SSN
 - **CCN:** first 15 digits are the rank
 - **Dates:** count seconds since minDate
 - **Fixed-length strings:** Sum-and-Scale
 - **Variable-length strings:** Sum-and-Scale with same-length strings + offset by number of shorter strings

- Unranking more complex

© 2015 IBM Corporation
Ranking Operations: Union

\[\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \]
Ranking Operations: Concatenation

\[\mathcal{F} = \mathcal{F}_1 \cdot d \cdot \mathcal{F}_2 \]
\[m = m_1 \cdot d \cdot m_2 \]

Sum-and-Scale:

\[r = r_1 \cdot \mathcal{F}_2 \cdot \text{size()} + r_2 \]

“smaller” formats interpreted as character-sets
Ranking Operations: \textit{Range}

\[\mathcal{F} = (\mathcal{F}_1 \cdot d)^k, \quad 1 \leq k \leq 4 \]
\[m = m_1 \cdot d \cdot m_2 \cdot d \cdot m_3 \cdot d \]

Add contribution of shorter strings:

\[r'' = \mathcal{F}_1.\text{size}()^2 + \mathcal{F}_1.\text{size}() \]

Sum-and-scale:

\[r' = r_1 \cdot (\mathcal{F}_1 \cdot d) \]
\[r = r' + r'' \]

lexicographic order!

© 2015 IBM Corporation
Our FPE: Analysis

• **Security:**
 – Only format properties preserved ⇒ security reduces to security of integer-FPE
 – Best security guarantee possible!

• **Efficiency:**
 – Ranking and unranking unavoidable in the Rank-then-Encipher method
 – Efficiency reduces to efficiency of integer-FPE
 – Medium-sized domains:
 – Large domains: only provably secure scheme [Bellare et al. ‘09] for range \(\{0,1, \ldots, M - 1\} \) first factors \(M \)
Improving Efficiency For Large Formats

- Efficiency-security tradeoff for large formats:
 - 1st solution: use FFX for integer FPE
 - Has no rigorous security analysis
 - 2nd solution: keep formats small ⇒ reduce format size
 - As we will see, this compromises security
 - We try to compromise as little as possible
- Partition message-space \mathcal{M}: $\mathcal{M} = \mathcal{M}_1 \cup \cdots \cup \mathcal{M}_n$
- But try to “hide” message-specific properties when possible
- Intuitively, try to increase the \mathcal{M}_i’s
 - Knowing $m \in \mathcal{M}_i$ still leaves “many unknowns”
The “Large Formats” Problem: Closer Look

- Inefficiency due to integer-FPE factoring domain size M
- Need to restrict domain size when calling integer-FPE
- Ranking and unranking is calculated in relation to M
- How do we rank in large formats?

Our solution combines:
- Delegating to sub-formats
- Parsing message to substrings $m = m_1 \ldots m_n$ and applying Rank-the-Encipher separately to every m_i

Main challenge: parsing m while hiding message-specific properties
- Obtained by keeping sub-formats as large as possible
\[F = F_1 \cup F_2 \]

$\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$

 Parsing and Ranking Union

\cup

© 2015 IBM Corporation
Parsing and Ranking Concatenation (1)

\[m = m_1 \cdot d \cdot m_2 \]

\[\mathcal{F} = \mathcal{F}_1 \cdot d \cdot \mathcal{F}_2 \]

- Ranking outputs a list
 \[r_1 \rightarrow r_2 \]

- Each rank encrypted separately:
 \[c_i = \text{unrank}(\text{intEnc}(r_i)) \]

- Encryption of \(m \) is concatenation:
 \[c = c_1 \cdot c_2 \]
Parsing and Ranking Concatenation (2)

\[m = m_1 \cdot d_1 \cdot m_2 \cdot d_2 \cdot m_3 \cdot d_3 \cdot m_4 \cdot d_4 \cdot m_5 \]

Ranking outputs a list

\[r' \rightarrow r'' \rightarrow r''' \]

Each rank encrypted separately:

\[c' = \text{unrank}(\text{intEnc}(r')) \]
\[c'' = \text{unrank}(\text{intEnc}(c'')) \]
\[c''' = \text{unrank}(\text{intEnc}(r''')) \]

Encryption of \(m \) **is concatenation:**

\[c = c' \cdot c'' \cdot c''' \]

© 2015 IBM Corporation
Parsing and Ranking Range

\[\mathcal{F} = (\mathcal{F}_1 \cdot d)^k, \ 1 \leq k \leq 4 \]

\[m = m_1 \cdot d \cdot m_2 \cdot d \cdot m_3 \cdot d \]

ranking outputs a list

\[r' \rightarrow r'' \]

each rank encrypted separately:

\[c' = \text{unrank}(\text{intEnc}(r')) \]
\[c'' = \text{unrank}(\text{intEnc}(r'')) \]

Encryption of \(m \) is concatenation:

\[c = c' \cdot c'' \]
Security Of Our FPE

- Format sub-dividing preserve *some* message-specific properties
- The larger the sub-format, the smaller the probability of reversing encryption
- Choosing parameters “correctly” ⇒ “reasonable” tradeoff

© 2015 IBM Corporation
Our FPE: Evaluation

- Federal Election Commission (FEC) reports:
 - Name, home address, employer, job title
 - Format size $\sim 2^{856}$

- FFX achieves better performance
- Splitting significantly improves the FE1 running time
 - Setting maxSize $< 2^{256}$ has no efficiency gain
Concurrent Work

• libFTE [Luchaup et al. ’14]
 – Also employ RtE
 – Format represented by regexp
 • Regexp->DFA/NFA
 • Rank/Unrank using DFA/NFA

• Limitations:
 – Designed for developers:
 • Defining new format (regexp) requires a developer’s involvement
 • outputs several possible schemes out of which developer choses the most appropriate one
 • resultant scheme could have poor performance and there is no way to know whether a different regex would give better performance
Concurrent Work (Cont.)

• Performance of our scheme compared to libFTE:

<table>
<thead>
<tr>
<th>Type</th>
<th>#Messages</th>
<th>Initialization</th>
<th>Rank</th>
<th>Unrank</th>
<th>FFX</th>
<th>Overall</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>libFTE (DFA)</td>
<td>100000</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>110</td>
<td>121</td>
<td>113 MB</td>
</tr>
<tr>
<td>libFTE (NFA)</td>
<td>100000</td>
<td>3</td>
<td>1697</td>
<td>15</td>
<td>100</td>
<td>1814</td>
<td>865 MB</td>
</tr>
<tr>
<td>Our Scheme</td>
<td>108238</td>
<td>-</td>
<td>27</td>
<td>80</td>
<td>84</td>
<td>213</td>
<td>34 MB</td>
</tr>
</tbody>
</table>

• Running Time: libFTE is ~ twice as fast as our approach
• Memory Usage: libFTE uses ~ 3 time more memory
Our FPE: Practical Summary

- We provide an FPE for general formats
 - First framework for efficiently representing general formats
 - First scheme to eliminate cycle-walking
 - Efficiency can be measured!
 - Optimal security guarantee
 - Support of large formats
 - With best security guarantee under size limitation

- Ingredients:
 - Framework for defining general formats
 - Efficient ranking and unranking methods for general formats
 - Support of large format
 - Through user-defined upper-bound on permissible format sizes

© 2015 IBM Corporation
Thanks For Listening!