Practical Solutions for Format
Preserving Encryption

Authors: Mor Weiss, Boris Rozenberg, and Muhammad Barham
Presented by Boris Rozenberg (borisr@il.ibm.com)

IEH

May 21, 2013

Talk Outline

Motivating example
Encryption: background

Format Preserving Encryption (FPE):
— Simple constructions

— Better constructions:
* Representing general formats
* Encrypting general formats

— Dealing with large formats
— Evaluation

Concurrent Work
Conclusion

Motivating Example

CITY HOSPITAL

Age
Former and present illnesses
Prescribed medication

© 2015 IBM Corporation

Encryption

(keeping data private)

Encryption Schemes
* AtripletIl = (KeyGen, Enc, Dec) of algorithms

— II associated with 3 sets:
* K': domain of valid keys
e M': message domain
e C:ciphertext domain.

— KeyGen generates random key from K

— Enc on message (plaintext) m € M and key k € K outputs
ciphertextc € C

— Dec on ciphertext ¢ € C and key k € K outputs message m
EM

* Deterministic encryption: only KeyGen is randomized
— Everything deterministic once key is chosen

 Assumed adversary knows everything but key

Encryption Schemes: Required Properties

* Atripletll = (KeyGen, Enc, Dec) of algorithms
* Correctness: forevery k € K and everym € M
Dec(k, Enc(k, m)) =m
* Security:
— Many security notions

— Intuitively, ciphertext ¢ reveals (almost) no
information on message m
* Even if adversary has prior knowledge

— Achieved by random 1:1 functions
* For usability, all algorithms must be efficient

Security-Efficiency Tradeoffs

- =

Efficiency Security
Enc(k,m) =m Enc(k,-) applies
for every key k a random 1:1

function

Format Preserving Encryption

(encrypting to “acceptable” formats)

Format Preserving Encryption (FPE)

Standard encryption maps messages to “garbage”
— May be impossible to store ciphertext in same tables
— Applications using data may crash

Need some plaintext properties to be preserved

FPE: Deterministic encryption scheme I1

= (KeyGen, Enc, Dec)

with additional property M’ = C

Ciphertexts have the same format as plaintexts!
— Social security number (ssn) mapped to legal ssn

— Credit card number (ccn) mapped to legal ccn

— Address mapped to legal address
— Etc...

Example: The DES Encryption

<€——64-bit string

<€——64-bit string

FPE Schemes For General Formats:
Simple Solution

 Known encryption schemes are FP for fixed, specific
formats

— Usually, bit strings of fixed length
e What about other formats?

— For CCNs, message space € {0,1, ..., 9}'°
— No known encryption for this message space!
* Can use cycle-walking
‘U ot flrst You don't succeed, You piek Yourself up and try again”
— Use “standard” encryption with {0,1, ...,9}!® € M
— Repeat until ciphertext in {0,1, ..., 9}

Cycle-Walking

@

"

Message space M = 2128

Valid CCNs
{0,1,...,9}16

Cycle-Walking: Pros and Cons
* Pros:
— Use “off-the-shelf” encryption schemes

* One design for all formats

— Known encryption schemes are provably secure

e Cons:

— Average efficiency depends on ratio between format-size and
message domain size

format size
| M|

* Need to repeat times on average

— No bound on actual efficiency

DSl 1
\ @@ ‘e Security

J \ J

Improved FPEs for Numeric Domains

e Several known schemes for numeric domains

— Considered due to (in)efficiency of cycle walking

. construct integer-FPE: FPE with M
=1{01,..,M —1}

What about non-numeric domains?

From Integer-FPE to General-Format FPE

* Can base general-format FPE on integer-FPE using Rank-
then-Encipher (RtE):
— Message space M arbitrarily ordered: rank: M - {0,1,.., M

Warm-Up Example

X y 7 A
upper lower digit upper
case case case

idea: compute location in lexicographic order

index each character

23 24 7 0
rank calculated by scaling and summigg ihe indices
- ‘
.26-10- V4 =)
23:26:1026 + , = an d_SCa\gh _je +
ASuM-2 . omene

1234=1-10-10-10 + 2-10-10 + 310 + 4

© 2015 IBM Corporation

Ranking General Formats: Simple Solution

* Want: efficient rank: M’ - {0,1,.., M — 1}
* Can rank every format F defined by
— Length £

— Sets X4, ..., Zp of “legal” characters in locations 1, ..., £.

* Simple solution:
— Divide M to subsets M7, ..., M,

— M;(defined by)és=5 ...,Eéi How to define efficiently?!
— Rank and encryption of m € M; computed in relation to M;

Simple Solution: Security Analysis

Simple solution:
— Divide M to subsets M7, ..., M,
— M;; defined by #;X¢, ...,Z}
— Rank and encryption of m € M; computed in relation to M;

Security is compromised:
— Ranking computed in every M; separately
— Som € M; always encrypted to ciphertext in M;

— Rarely the case for random 1:1 functions f: M - M,

especially for large k
<~ >

Efficiency Security

Simple Solution: Practical Security

Simple solution:
— Divide M to subsets M7, ..., M,
— M defined by #;%%, ..., 2}
— Rank and encryption of m € M; computed in relation to M;

e M = names format:
— 2-4 words
— Every word upper-case followed by 1-10 lower-case

* M; defines number of words + number of letters in
each word

* “John Smith” can encrypt to “Angm Ojkri” but not to
“Bar Refaeli”

* If only one of them is possible, adversary knows
plaintext for sure

Optimizing Security-Efficiency Tradeoff

* Cycle walking inefficient since ignores format properties
= >

Efficiency Security
e Simple solution insecure since preserves “cosmetic”

message properties

<~ >
Efficiency Security
 Want a “balanced” encryption scheme
— Take into consider format Pi\perties... >
— ...and reserugonly them! Security
— Need:

* Framework of representing general formats
 Method of ranking general formats

Representing General Formats: Framework

* Define building-blocks and operations
* Building blocks are called “primitives”

— SSNs
— CCNs (the format we
— Dates (between minDate and maxDate) saw before)

— Fixed-length strings with index-specific character-sets
e Usually represent “rigid” formats

— e.g., fixed length
e Can also represent “less rigid” formats

— Variable-length strings over some alphabet

Representing General Formats: Framework (2)

* Define building-blocks and operations

e Operations allow constructing compound (and complex)
formats from primitives

— Operations preserve the parsing property: compound format can
parse string to ingredients

 Compound formats are called “fields”

* Can construct format F from “smaller” formats F;, ..., Fy
by:
— Union
— Concatenation:
e F=F,-dy-Fy-...-dy_1-F,, dyq, ...,d,,—1 are delimiter characters
 F =F; .. Fpinsome cases
— Range: F = (F1 - A)*, min < k < max

Constructing Compound Formats: Example

F, =1{A,B,...,.Z}
= length-k strings of lower-case letters, 1 < k < 10
JF5 =SSNs
Concatenation:
— Fuwora = Fq - F, gives words
—F = -—-F,, e.g., “abc-def” or “aaaaa-bb”

Union: F = 7, U 75, e.g., “111223333” or “A”

Range: Frume = (Fuora - Space) for2 <k < 4
gives names, e.g. “Bar Refaeli ” or “Louisa May
Alcott ”

Ranking General Formats

e Define ranking for building-blocks
e Define ranking for operations

 Automatically gives ranking for compound formats:
— Parse string to ingredients
— Delegate ranking of substrings to ingredients
— Use ranking for operations to “glue” ranks together

Ranking Primitives

e Ranking usually fairly simple:
— SSNs: “basically” 9-digit numbers, remove illegal-SSNs smaller
that given SSN
— CCN: first 15 digits are the rank
— Dates: count seconds since minDate lexicographic order!

— Fixed-length strings: Sum-and-Scale €~

— Variable-length strings: Sum-and-Scale with same-length
strings + offset by number of shorter strings

* Unranking more complex

Ranking Operations: Union

F=F UF,

Ranking Operations: Concatenation
:/_" — Tl . d . :FZ
m=my-d-m,

Sum-and-Scale:

r=r1q size() + 15
L L
I . i § -

“smaller” formats interpreted
as character-sets

Ranking Operations: Range

F=(F ¥ 1<k<4
m=my-d-my,-d-ms-d

(7 [].d ,-d’;\"_\

Su \C o(

51ze() + r3

ma?
= aE aP“

(T1 51ze())2 + F,. 31ze()

\ \e’k\ % _acion of shorter strings:
.

*)= a)

© 2015 IBM Corporation

Our FPE: Analysis

* Security:
— Only format properties preserved = security reduces to
security of integer-FPE
— Best security guarantee possible!
» Efficiency:
— Ranking and unranking unavoidable in the Rank-then-
Encipher method
— Efficiency reduces to efficiency of integer-FPE

— Medium-sized domains: ___€ — >
Efficiency Security

x — Large domains: only provably secure scheme
for range {0,1, ..., M — 1} first factors M

<€ >
Efficiency Security

Improving Efficiency For Large Formats

Efficiency-security tradeoff for large formats:
I

Efficiency Security

1t solution: use FFX for integer FPE
— Has no rigorous security analysis

29 solution: keep formats small = reduce format size
— As we will see, this compromises security
— We try to compromise as little as possible

Partition message-space M': M = M5 U ---U M,

But try to “hide” message-specific properties when
possible

Intuitively, try to increase the M;’s
— Knowing m € M; still leaves “many unknowns”

The “Large Formats” Problem: Closer Look

* Inefficiency due to integer-FPE factoring domain size M
* Need to restrict domain size when calling integer-FPE
 Ranking and unranking is calculated in relation to M

* How do we rank in large formats?

 QOur solution combines:
— Delegating to sub-formats

— Parsing message to substrings m = m, ...m,, and applying
Rank-the-Encipher separately to every m;

* Main challenge: parsing m while hiding message-
specific properties
— Obtained by keeping sub-formats as large as possible

Parsing and Ranking Union

m

Parsing and Ranking Concatenation (1)
m=mq-d-m,

F = Tl - d - :Fz
ranking outputs a list

rqi 2 7r9
/ A i - I 7 \

each rank encrypted separately:
¢; = unrank(intEnc(r;)

1 L | AN L1 | S AN

Encryption of m is concatenation:
C=C1°C

© 2015 IBM Corporation

Parsing and Ranking Concatenation (2)

m=m1'd1'm2'dz'mg'dg‘m4'd4°m5

ranking outputs a list
rl N rn N rnl

each rank encrypted separately:
¢’ = unrank(intEnc(r"))

¢" = unrank(intEnc(c"))
c¢"' = unrank(intEnc(r""))

= =

Encryption of m is concatenation:
C — C,° C" . cnl

© 2015 IBM Corporation

Y

Parsing and Ranking Range
F=(F -d* 1<k<4
m=mq-d-my-d-msz-d

|T1 I .

ranking outputs a list
rl N rn

I I.‘! oI Io ‘! ~

F4

each rank encrypted separately:
¢’ = unrank(intEnc(r'))
c" = unrank(intEnc(r"))

Encryption of m is concatenation:
/]

© 2015 IBM Corporation

d

Security Of Our FPE

* Format sub-dividing preserve some message-specific
properties

* The larger the sub-format, the smaller the probability of
reversing encryption

* Choosing parameters “correctly” = “reasonable”
tradeoff

<€ 1 >
Efficiency Security

Our FPE: Evaluation

* Federal Election Commission (FEC) reports:

— Name, home address, employer, job title

e Format size ~ 2856
| | FFX FE1 |
j'shﬁ;i(.snize #Messages Rank | Unrank T?E).(-‘“rotal | Overall | FE1' fa;éiarf)veral‘lﬂ.i
- [100000	26	126 [98	275 [1311	1486		
2312 108238 27	80	8	213 638	746		
2%	138504	26	66	107	225 496	540
2256	197319 26	63	131	253 276	367	
297	230902	26	63	124	252	208
2'28	336471	26	65	164	317	403
2%	625143 24	68	318	504 726	820	

— FFX achieves better performance

— Splitting significantly improves the FE1 running time

« Setting maxSize < 22°° has no efficiaency gain

* |ibFTE

Concurrent Work

— Also employ RtE

— Format represented by regexp

Regexp->DFA/NFA
Rank/Unrank using DFA/NFA

* Limitations:
— Designed for developers:

Defining new format (regexp) requires a developer’s involvement

outputs several possible schemes out of which developer choses the
most appropriate one

resultant scheme could have poor performance and there is no way to
know whether a different regex would give better performance

Concurrent Work (Cont.)

e Performance of our scheme compared to libFTE:

-l

Type | #Messages | Initialization | Rank | Unrank | FEX | Overall Memory
libFTE (DFA) | 100000 | 0 1 g8 |10 | 121 113 MB
libFTE [NFA) | 100000 : 1697 15 100 | 1814 | 865 MB
Our Scheme | 108238 : 27 80 g4 | 213 34 ME

 Running Time: libFTE is ~ twice as fast as our approach

* Memory Usage: libFTE uses ~ 3 time more memory

Our FPE: Practical Summary

* We provide an FPE for general formats
— First framework for efficiently representing general formats

— First scheme to eliminate cycle-walking
 Efficiency can be measured!

— Optimal security guarantee
— Support of large formats
* With best security guarantee under size limitation
* Ingredients:
— Framework for defining general formats
— Efficient ranking and unranking methods for general formats

— Support of large format
* Through user-defined upper-bound on permissible format sizes

Thanks For Listening!

