A Large-Scale Study of Mobile Web App Security

Patrick Mutchler*, Adam DoupéT, John Mitchell*, Chris Kruegeli and Giovanni Vignai
*Stanford University
{pcm2d, mitchell} @stanford.edu
fArizona State University
doupe@asu.edu
iUnive:rsity of California, Santa Barbara
{chris, vigna} @cs.ucsb.edu

Abstract

Mobile apps that use an embedded web browser, or mobile
web apps, make up 85% of the free apps on the Google
Play store. The security concerns for developing mobile web
apps go beyond just those for developing traditional web apps
or mobile apps. In this paper we develop scalable analyses
for finding several classes of vulnerabilities in mobile web
apps and analyze a large dataset of 998,286 mobile web apps,
representing a complete snapshot of all of the free mobile web
apps on the Google Play store as of June 2014. We find that
28% of the studied apps have at least one vulnerability. We
explore the severity of these vulnerabilities and identify trends
in the vulnerable apps. We find that severe vulnerabilities
are present across the entire Android app ecosystem, even in
popular apps and libraries. Finally, we offer several changes
to the Android APIs to mitigate these vulnerabilities.

I. INTRODUCTION

Mobile operating systems allow third-party developers to
create applications (“apps”) that run on a mobile device. Tra-
ditionally, apps are developed using a language and framework
that targets a specific mobile operating system, making it
difficult to port apps between platforms. Rather than building
all of an app’s functionaility using a development framework
specific to a mobile operating system, developers can leverage
their knowledge of web programming to create a mobile web
app. A mobile web app is an app that uses an embedded
browser to access and display web content. Often, a mobile
web app will be designed to interact with web content written
specifically for the app as a replacement for app-specific Ul
code. By building an app in this manner, developers can
more easily deliver updates to users or port their app between
platforms. In addition, several frameworks exist to simplify
development by automatically producing the app code needed
to interact with a web application [2} |8].

Unfortunately, security for mobile web apps is complex and
involves a number of considerations that go beyond traditional
app and web security. Developers cannot simply apply existing
knowledge of web security and app security to create secure
mobile web apps; vulnerabilities that cannot exist in traditional
web apps can plague mobile web apps. Prior research on
mobile web app vulnerabilities has either focused on small
sets of apps, focused on only a subset of the kinds of mobile
web apps, or made major simplifying assumptions about the
behavior of mobile web apps. This has led to an understanding

of the causes of vulnerabilities in mobile web apps but an
inadequate understanding of their true prevalence in the wild.

In this work we study three vulnerabilities in mobile
web apps (loading untrusted web content, exposing stateful
web navigation to untrusted apps, and leaking URL loads
to untrusted apps) and develop highly scalable analyses to
identify these vulnerabilities more accurately than prior re-
search. We analyze an extremely large dataset of 998,286
mobile web apps developed for Android, the mobile operating
system with the largest market share. This dataset represents
a complete snapshot of the free apps available on the Google
Play marketplace, the largest Android app store. To the best
of our knowledge, this is the most comprehensive study on
mobile web app security to date. We find that 28% of the
mobile web apps in our dataset contain at least one security
vulnerability.

We explore the severity of these vulnerabilities and find that
many real-world vulnerabilities are made much more severe
by apps targeting outdated versions of the Android operating
system and show that many recently published apps still exhibit
this behavior. We examine trends in vulnerable apps and find
that severe vulnerabilities are present in all parts of the Android
ecosystem, including popular apps and libraries. Finally, we
suggest changes to the Android APIs to help mitigate these
vulnerabilities.

The main contributions of this paper are:

e We develop a series of highly scalable analyses that
can detect several different classes of vulnerabilities
in mobile web apps.

e We perform a large-scale analysis of 998,286 mobile
web apps developed for Android to quantify the
prevalence of security vulnerabilities in the Android
ecosystem.

e We analyze trends in these vulnerabilities and find that
vulnerabilities are present in all corners of the Android
ecosystem.

e We suggest changes to the Android APIs to help
mitigate these vulnerabilities.

We review relevant properties of Android and the WebView
interface in Section and present an appropriate security
model for mobile web apps and describe the vulnerabilities
we will be studying in Section [[lIl We explain our analysis
methods in Section followed by our experimental results

in Section [Vl Related work and conclusions are in sections [V]]
and [VII] respectively.

II. BACKGROUND

Before we can understand the possible vulnerabilities in
mobile web apps we must first understand their structure. Note
that for the remainder of this paper we will only examine
mobile web apps written for the Android platform. However,
mobile web apps are in no way unique to Android. iOS and
Windows Phone 8 apps have similar functiona]ityﬂ

Android allows apps to embed a custom webkit browser,
called a WebView. WebViews can render web content ob-
tained either from the Internet or loaded from files stored
on the mobile device. Apps load specific content in the
WebView by calling the methods loadUrl, loadData,
loadDataWithBaseUrl, or postUrl and passing either
strings containing HTML content or URLs as parameters.
URLSs can either be for Internet resources or for resources
stored locally on the mobile device. We call methods used
to navigate the WebView to web content navigation methods.
Users can interact with the rendered content just like they
would in a web browser. We call any app that includes
embedded web content a mobile web app.

While developers can create a mobile web app simply by
creating a WebView element and directing it to their web
backend, several frameworks exist to simplify development by
producing all of the code necessary to load web content pack-
aged with an app. These apps, which we call “PhoneGap apps”
based on the most popular of these frameworks, represent a
subset of all mobile web apps with the unique feature that they
only retrieve web content stored locally on the device rather
than interacting with a remote webserver. For the purposes of
this study we treat PhoneGap apps as a subcategory of mobile
web apps rather than singling out their unique structure.

A. Inter-App Communication

Some vulnerabilities in mobile web apps involve inter-
app communication. Apps primarily communicate with the
Android operating system and other apps using an API for
inter-process communication called Infents. When sending an
Intent, apps specify either a specific app component to receive
the Intent or that the Intent is a general action. Example actions
include sending an email, performing a web search, or taking a
picture. Intents that specify a specific app component are called
Explicit Intents and are delivered only to the specified app
component. Intents that specify an action are called Implicit
Intents and are delivered to any app component that can handle
that action. Apps declare the set of actions that each of their
components can handle in their Manifest (an XML document
packaged with the app) by declaring an Intent Filter for each
component. Apps can also declare that a component can handle
requests to view a particular resource by defining a custom
URL pattern. A thorough examination of Intents can be found
in [16].

Listing [1| shows part of a manifest for a simple app that
contains two components. The first component responds to the

IBoth platforms have a class that behaves similarly to the WebView class
in Android. In iOS it is called a UIWebView and in Windows Phone 8 it is
called a WebView.

<activity android:name="SMSHandler">
<intent-filter>
<action android:name=
"android.provider.Telephony.SMS_RECEIVED"/>
</intent-filter>
</activity>

<activity android:name="WebHandler">
<intent-filter>
<action android:name=
"android.intent.action.VIEW"/>
<data android:scheme="http"/>
<data android:host="example.com"/>
</intent-filter>
</activity>

Listing 1: A partial app manifest demonstrating intent filters. The
app registers two components. One will respond to incoming SMS
messages and the other will respond to requests to load web pages
from example.com

action SMS_RECEIVED, which the Android operating system
sends when there is an incoming text message. The second
component responds to requests to load web URLs from host
example.com.

B. Controlling Navigation

Most mobile web apps are not general purpose browsers.
They are instead designed to interact with only specific web
content. Android allows developers to intercept and prevent un-
supported web resources from being loaded by implementing
the callback methods shouldOverrideUrlLoading and
shouldInterceptRequest. A WebView calls should-
OverrideUrlLoading before loading a new page in a
top level fram A WebView calls shouldIntercept-
Request before making any web request, including iframe
and image loads. In both cases the app has an opportunity
to prevent the resource load by returning true in the case
of shouldOverrideUrlLoading or null in the case
of shouldInterceptRequest. The default behavior of
shouldOverrideUrlLoading is to prevent a load and
the default behavior of shouldInterceptRequest is to
allow a request. For the remainder of this paper we call these
methods navigation control methods.

Simply overriding a URL load prevents a WebView from
doing anything when a user clicks a link. This is unexpected
and might harm user experience, so most apps will send an
Intent to have the browser app load an overridden URL in
addition to overriding the URL load. This approach allows
apps to correctly constrain the web content loaded in their
app without breaking links on the web. Listing [2] shows a
shouldOverrideUrlLoading implementation for a mo-
bile web app that only supports content from the example.com
domain. All other content is prevented from being loaded in
the WebView and is sent to the default web browser instead.

2This method is not called when loading pages by calling navigation
methods (i.e., when the app explicitly tells the WebView to load web content),
by making POST requests, and by following redirects on Android versions
below 3.0.

public boolean shouldOverrideUrlLoading (
WebView view, String url) {

String host = new URL (url) .getHost ();
if (host.equals ("example.com")) {
return false;
}
Intent i = new Intent (
Intent .ACTION_VIEW,
Uri.parse (url)
)
view.getContext () .startActivity (i) ;
return true;

}

Listing 2: A shouldOverrideUrlLoading implementation
that constrains navigation to pages from example.com. Any page
from another domain will be loaded in the default browser app.

C. JavaScript Bridge

A key difference between a mobile web app and a typical
web app is the enhanced capabilities of web content loaded
in a mobile web app. Web browser are beginning to expose
some APIs to web applications (e.g., location services), but a
mobile web app is able to combine normal web application
functionality with all of the functionality available to a mobile
app. This combination allows developers to create rich new
types of applications that cannot exist in a typical browser.

To facilitate tight communication between app code and
web content, Android includes a feature called the JavaScript
Bridge. This feature allows an app to directly expose its Java
objects to JavaScript code running within a WebView. Specif-
ically, if an app calls addJavascriptInterface (obj,
"name") on a WebView instance then JavaScript code in that
WebView can call name. foo () to cause the app to execute
the Java object obj’s method foo, and return its result to the
JavaScript code. We call a Java object that has been added
to the JavaScript Bridge a Bridge Object and the JavaScript
object used to access the Bridge Object a Bridge Reference.

The relationship in Android between Bridge Objects,
Bridge References, and the Same Origin Policy is unintuitive.
If an app creates a Bridge Object then JavaScript code from
any origin has access to a matching Bridge Reference, even if
that content is loaded in an iframe. Bridge Objects remain
available to web content loaded in a WebView even after
navigating to a new page. Each Bridge Reference is protected
from the others by Same Origin Policy but they can all call
methods on the same Bridge Object. Therefore, Bridge Objects
are tied to the WebView instance rather than isolated by Same
Origin Policy.

Figure |l| shows how multiple origins can use isolated
Bridge References to access the same Bridge Object. This
lack of confinement can allow malicious web content to attack
an app through the JavaScript Bridge. No official mechanism
exists to expose Bridge References to particular origins or
provide any sort of access control. Official documentation on
the JavaScript Bridge feature can be found in [[7].

III. MOBILE WEB APP SECURITY

In this section we describe the security model for mobile
web apps and describe several classes of vulnerabilities in
mobile web apps. We will later construct analyses to find and
quantify these vulnerabilities in our dataset.

A. Adversary Model

There are three relevant adversaries to consider when
discussing mobile web app security:

App Adversary. The app adversary captures the attack
capabilities of a malicious app running alongside a trusted
app. An app adversary may read from and write to the shared
filesystem, may send intents to any apps installed on the
device, and may register components that respond to intents.

Network Adversary. The network adversary may receive,
send, and block messages on the network. However, the
network adversary does not have access to cryptographic keys
of any other party. This is the standard network adversary used
in the design and analysis of network security protocols.

Navigation-Restricted Web Adversary. The navigation-
restricted web adversary is a variant of the typical web
adversary. Specifically, the navigation-restricted web adversary
may set up any number of malicious web sites and place any
content on them. However, because mobile device users can
only navigate mobile web apps through the interface of the
app, a mobile web app may only navigate to a restricted set
of sites that is limited by the internal checks and behavior of
the app.

For comparison, the standard web adversary model as-
sumes a user will visit any malicious content (in a separate
tab or window from other content) [[13]]. This is a reasonable
assumption in the design and analysis of web security mecha-
nisms because browsers provide a URL bar for the user to visit
any web content and there are ample mechanisms for tricking
an honest user into visiting malicious content. In contrast, a
user navigates a mobile web app only by interacting with the
app itself or by following links in embedded web content that
is reached in this way.

B. Studied Vulnerabilities

1) Loading Untrusted Content: 1t is very difficult for a
mobile web app to ensure that untrusted web content loaded
in a WebView is safely confined to the WebView. Apps
cannot easily control which domains have access to Bridge
Objects, allowing untrusted web content to execute app code
through the JavaScript Bridge. In addition, WebView contains
an unpatched Universal Cross-Site Scripting vulnerability in
versions below Android 4.4 [4, |1]]. This vulnerability affects
almost 60% of in use Android devices [S]]. Finally, because
mobile web apps do not include a URL bar, users have no
indication about what site they are visiting and whether their
connection is secure. This means that users cannot make an
informed decision about whether to input sensitive information
like credentials.

For these reasons, security best practices for mobile web
apps state that it is not safe to load any untrusted web content
in a WebView. This is true even if the untrusted content is

example.com

ads.com
obj.foo()
? MyObj.foo()
\j
;
obj.foo()
L

Fig. 1: An example of Same Origin Policy limitations for the
JavaScript Bridge. An app exposes an instance of MyObj to the
JavaScript Bridge and loads a HTML page from example.com with
an iframe containing content from ads.com. Both example.com and
ads.com have access to a separate Bridge Reference “obj”. These
Bridge References are separated from each other by Same Origin
Policy (dashed line) but both Bridge References can call methods on
the same Bridge Object through the JavaScript Bridge.

loaded in an iframe. In general, there are four ways that
a mobile web app can load untrusted content. An app can
allow navigation to untrusted content through normal user
interaction, it can load trusted content over HTTP, it can load
trusted content that is stored insecurely on the device, or it can
load trusted content over HTTPS but use HTTPS incorrectly.

The first three methods of loading untrusted web content
are straightforward but the fourth method demands more
explanation. In a traditional browser environment an app has no
control over the browser’s SSL implementation. If the browser
finds a problem with its SSL connection then it displays a
warning to the user. WebView, on the other hand, allows
developers to control an app’s behavior in the presence of SSL
certificate errors by overriding the callback onReceived-
SslError. This even includes proceeding with a resource
load without informing the user. Apps that load resources
over SSL despite invalid certificates lose all of the protection
HTTPS gives them against active network adversaries.

2) Leaky URLs: Apps can leak information through URL
loads that are overridden by navigation control methods. When
an app overrides a URL load and uses an Implicit Intent to
load that resource, any app can handle that URL load. If a
leaked URL contains private information then that information
is leaked along with the URL. A developer might think that
it is safe to use an Implicit Intent to deliver a URL to an app
component because the URL matches a custom URL scheme
but Android does not provide any protections on custom URL
schemes. An example of this vulnerability was discussed by
Chen et al. [15] in relation to mobile OAuth implementations.
If an app registers a custom URL pattern to receive the final
callback URL in an OAuth transaction and uses an Implicit
Intent to deliver the URL then a malicious app can register
the same URL pattern and steal the OAuth credentials. See
Figure 2 for a visual representation of this vulnerability.

3) Exposed Stateful Navigation: Developers must be care-
ful about what app components they expose to Intents from
foreign apps. Existing research has explored apps that leak
privileged device operations (e.g, access to the filesystem or

s

shouldOverride 4

1" Urlloading my_cauth://

WebView

1

my_oauth:// |a*”

Fig. 2: An app leaking an OAuth callback URL. In Step 1 both the
vulnerable app and the malicious app register an app component to
handle URLs matching the protocol scheme my_oauth. In Step 2
the OAuth provider completes the protocol and responds with an
HTTP 302 response to redirect the WebView. In Step 3 the WebView
passes this URL to shouldOverrideUrlLoading, which uses
an Implicit Intent to deliver the URL and leaks the URL to the
malicious app in Step 4.

GPS) to foreign apps through Intents. Similarly, a mobile
web app can leak privileged web operations to foreign apps
by blindly responding to Intents. More specifically, if an app
performs a call to postUrl in response to a foreign Intent
then a malicious app can perform an attack similar to Cross-
Site Request Forgery. For example, if a mobile web app uses
a POST request to charge the user’s credit card, and this
request is exposed to foreign Intents then a malicious app could
send an Intent to place a fraudulent charge without the user’s
knowledge or consent. In order to prevent this vulnerability,
developers must ensure that any calls to postUrl that can
be triggered by an Intent from a foreign app are confirmed by
the user through some UI action.

IV. ANALYSES

In this section we describe the methods used to identify
vulnerabilities in mobile web apps and determine the severity
of these vulnerabilities. In order to scale this experiment
to a dataset of nearly one million apps we designed these
techniques with efficiency as a priority. This can lead to
some imprecision in our results, however, we note that several
properties of mobile web apps make these analyses more
precise then one might expect. We also note that our methods
were designed to be conservative whenever possible so that we
do not incorrectly flag secure apps as vulnerable. We discuss
the limitations of our analyses and their effects on our results
in more detail in Section [V}

A. Reachable Web Content

Mobile web apps that load unsafe web content expose
themselves to attack. We identify apps that load unsafe web
content (e.g., content from untrusted domains or content loaded
over HTTP) in three steps. (1) extract the set of initially
reachable URLs from the app code, (2) extract the navigation
control implementations from the app code, and (3) perform
a web crawl from the initial URLs while respecting the
navigation control behavior and report any unsafe web content.
This method mirrors the true navigation behavior of an app.

1) Initial Resources: To find the set of web resources that a
mobile web app loads directly we perform a string analysis that

reports the possible concrete values of parameters to navigation
methods like 1oadUrl. In order to run quickly, our analysis
is mostly intraprocedural and supports simple string operations
(e.g., concatenation) but does not support more complex string
operations (e.g., regular expression matching or substring
replacement). This limits the precision of our analysis but,
based on our analysis, we conclude that mobile web apps will
often access hard-coded web addresses or build URLs very
simply so this simple approach is often very effective. Strings
that cannot be computed by our analysis usually originate
either far away from a call to a navigation method or even in
an entirely separate app component. Extracting these strings
would require not only a precise points-to analysis but also
an accurate understanding of the inter-component structure
of an app, taking us beyond the state of the art in scalable
program analyses. We built our string analysis using Soot, a
Java instrumentation and analysis framework that has support
for Dalvik bytecode [29, |12].

When possible, our string analysis also reports known
prefixes to unknown values. The prefix can give us information
about the loaded content even if we cannot compute the URL.
For example, a URL with the concrete prefix http:// tells
us that an app is loading content over an insecure connection
even if we do not know what content the app is loading.

In Android apps, many string constants are not defined
in app code. Instead they are defined in a XML docu-
ments packaged with the app and then referenced by calling
Resources.getString or similar methods. A naive string
analysis will fail to find these constants. We parse these XML
documents and replace calls to Resources.getString
and similar methods with their equivalent constant string
values before running our analysis. We use apktool [6] to
unpackage app contents and access these XML documents.

2) Handling Navigation Control: In order to understand
how an app can navigate the web and expose itself to un-
safe web content we must understand the behavior of any
implementations of shouldOverrideUrlLoading and
shouldInterceptRequest, the details of which are de-
scribed in Section Previous work by Chin et al. [17]
categorized implementations as allowing all navigation or no
navigation based on a heuristic and performed a web crawl
if an implementation was categorized as allowing naviga-
tion. This does not capture the full behavior of navigation
control in Android because many apps will allow navigation
to some URLs but not others (as our example in Listing
demonstrates). In addition, the authors do not analyze im-
plementations of shouldInterceptRequest. Below, we
describe our approach that more precisely handles navigation
control methods by computing the results of these methods for
concrete URLs.

We extract an app’s implementations of should-
OverrideUrlLoading and shouldIntercept—
Request and create a runnable Java program that, when
given a URL to test, reports the behavior of these methods
as if they had been called on that URL during normal app
execution. Specifically, we compute and extract a backwards
slice of the method with respect to any return statements,
calls to navigation methods, and calls to send Intents. A
backwards slice is the set of all program statements that
can affect the execution of a set of interesting program

statements [31]]. Algorithms to compute backwards slices
for sequential programs are well understood, and we use a
known algorithm to compute our slices [11]. This approach
is much more efficient than running an app in an emulator to
determine if a WebView is allowed to load a page.

A backwards slice might contain program statements that
cannot be executed outside of the Android emulator. For exam-
ple, an implementation of shouldOverrideUrlLoading
might access a hardware sensor or the filesystem. In order to
keep our approach sound but still execute extracted slices, we
remove any statements that we cannot execute in a stand-alone
Java executable and insert instrumentation to mark data that
these statements can edit as unknown. If during execution a
statement uses unknown data we halt execution and report that
the result could not be determined.

A true backwards slice is sometimes unecessary to cor-
rectly capture the behavior of a navigation control method.
We do not care about the behavior of particular statements in
a navigation control method. We only care about the overall
behavior of the method. Two different program statements that
return the same value are identical for our purposes. Therefore,
we can further simplify our slice by combining “identical”
basic blocks. Specifically, if all paths from a particular branch
statement exhibit the same behavior with respect to return
statements, calls to navigation methods, and calls to send
Intents then we can replace the branch and all dominated
statements with their shared behavior. This pruning step makes
it possible to execute slices that branch based on app state
for reasons other than controlling navigation. Like our string
analysis, our slicer was built using Soot.

3) Crawling: Once we have the set of initial URLs and the
extracted navigation control implementations we can identify
the set of resources that an app can reach by performing a
web crawl starting from each initial URL and only loading a
resource if the extracted navigation control implementations
allow it. We are careful to spoof the appropriate headersﬂ of
our requests to ensure that the web server responds with the
same content that the app would have retrieved.

Finally, we must decide if web content reachable through
user interaction is trusted or not. Apps do not explicitly list the
set of web domains that they trust so this must be inferred from
the behavior of the app. We assume that an app trusts the local
private filesystem (file://), all domains of initially loaded web
content, and all subdomains of trusted domains. If a web crawl
reaches content from any untrusted domain then we report a
security violation.

B. Exposed Stateful Navigation

Apps that expose postUrl calls to foreign Intents are
vulnerable to a CSRF-like attack where foreign apps can
force state changes in the backing web application. A call to
postUrl is exposed if it can be reached from an exposed
app component without any user interaction. We find the set
of exposed app components by examining the app’s Manifest
(see Section [[I-A). The challenge is how to determine if there

3Specifically, we specify the X~-Requested-With header, which Android
sets to the unique app id of the app that made the request, and the
User-Agent header.

Intent
— | onCreate » createDialog
User clicks)
---------- » onClick f-----+| postUrl

Fig. 3: A path from a foreign Intent to postUrl that is broken by
a UI callback. Clicking the button calls onClick but the call edge
comes from the OS and is not present in app code. Solid edges are
found during reachability analysis and dashed edges are not.

has been any user interaction during an execution path from an
app component’s initialization methods to a call to postUrl.

We observe that user interaction in Android is generally
handled through callback methods. For example, to create a
conformation dialog box an app might create a Ul element
and hook a callback method to the confirm button. If the
user confirms the action, the operating system will then call
the registered method. This design pattern means that control
flow involving user interaction will break at the callback
methods in a normal reachability analysis so paths that involve
user input will not be reported. We can therefore perform a
traditional reachability analysis starting with each exposed app
component’s initialization methods (onCreate, onStart,
and onResume) to find exposed POST requests. Figure [3]
shows a path to a navigation method that is broken at a callback
method where user interaction occurs.

Performing a precise points-to analysis necessary to com-
pute a precise call graph is too inefficient to scale to our
dataset. Instead, we compute the possible receiver methods
of a call site by considering only the syntactic type of the
receiver object. This approach can generate spurious call edges
and lead to false positives but allows us to fully analyze our
dataset more efficiently.

C. Mishandled Certificate Errors

By default, an embedded WebView will cancel loading a
resource over HTTPS when there is a certificate error, however
developers are able to change this behavior by implementing
the method onReceivedSslError. Developers can do one
of three things in this method. They can let the request proceed
as normal by calling Ss1ErrorHandler.proceed, cancel
the request by calling Ss1ErrorHandler.cancel, or load
a different resource by calling a navigation method. It is dif-
ficult to statically determine if an implementation is correctly
validating a certificate. Therefore, we only analyze whether
an implementation must ignore certificate errors on all paths
and conservatively report all other apps as secure. We can do
this completely intraprocedurally by also performing an escape
analysis to ensure that a reference to the Ss1ErrorHandler
instance does not leave the method body.

D. Leaky URLs

An app “leaks” a URL load if it prevents that URL
from being loaded with shouldOverrideUrlLoading
and instead has the operating system process the request.

Mobile Web App Feature | % Apps
JavaScript Enabled 97
JavaScript Bridge 36
shouldOverrideUrlLoading 94
shouldInterceptRequest 47
onReceivedSslError 27
postUrl 2
Custom URL Patterns 10

TABLE I: The percentage of mobile web apps that contain function-
ality we study in this experiment.

Foreign apps can register an app component to handle the
URL load. However, it is often correct behavior for an app
to send a URL load to be handled by the operating system. A
leaky URL is only a security violation if the app infends to
load that URL itself.

We say that an app intends to load a URL if the URL
matches a custom URL pattern registered by the app in its
Manifest. We identify vulnerable apps by computing a regular
expression that describes the URL patterns that an app registers
in its Manifest and then generating sample URLs to test
against an app’s implementation of shouldOverrideUrl-
Loading. We report a vulnerability if any URLs matching
a custom URL pattern are allowed to escape the app by
the appropriate implementation of shouldOverrideUrl-
Loading.

V. RESULTS

Our snapshot of the Google Play store contains 1,172,610
apps, 998,286 (85%) of which use a WebView in some fashion.
These apps represent a complete snapshot of the free mobile
web apps on the store as of June, 2014. Along with the apps,
we collected data about each app including the number of
times it has been downloaded and the most recent date that it
was updated. We performed our analyses on 100 Amazon EC2
c3.4xlarge virtual machines for approximately 700 compute
hours. Table 1 shows the percentage of mobile web apps that
use features relevant to this study. In total, 28% of mobile web
apps in our dataset contained at least one vulnerability. We are
currently reporting these vulnerabilities to the developers of the
most popular apps and libraries. A summary of our results can
be found in Table 2.

A. Unsafe Navigation

15% of the apps in our dataset contained at least one fully
computed URL for an Internet resource (as opposed to a local
file). Of these apps, 34% (5% of the total population) were
able to reach untrusted web content by navigating from an
initial URL while still obeying the behavior of any navigation
control methods. Notably, almost all of these apps could reach
untrusted content either in a single link or in an iframe on an
initially loaded page.

B. Unsafe Content Retrieval

40% of the mobile web apps in our dataset had a com-
putable scheme for at least one URL. 56% of these apps
(22% of the total population) contained a URL with an HTTP

scheme. Only 63% of the apps contained a scheme for any
Internet resource (HTTP or HTTPS) so the large majority of
mobile web apps that retrieve content from the Internet (as
opposed to a local file) retrieve some content unsafely. We
found that almost no apps (less than 0.1%) load web content
from the SD card.

C. Unsafe Certificate Validation

27% of mobile web apps in our dataset contain at least
one implementation of onReceivedSslError. 29% of
these apps (8% of the total population) contained at least one
implementation that ignores certificate errors on all code paths.
If we include unsound results where the Ss1ErrorHandler
instance can escape the method body then the vulnerability rate
jumps to 32%. These numbers together provide a sound under
and over approximation of the percentage of apps that always
ignore certificate errors.

We note that there appears to be widespread con-
fusion about the intended use and consequences of
onReceivedSslError. We analyzed the corpus of posts
on StackOverflow [9]] and found 128 posts that include imple-
mentations of onReceivedSslError. 117 of these posts
ignore the certificate error on all code paths. These posts
are most commonly helping developers get content loaded
over HTTPS to display properly when using a self-signed
certificate. While apps that perform web requests manually
can pin a trusted certificate using a TrustManager instance,
WebView does not have an official mechanism for trusting
self-signed certificates. We suspect that developers believe
that implementing onReceivedSslError is an appropriate
alternative and do not understand the consequences of ignoring
all errors.

D. Exposed POST Requests

1.9% of mobile web apps in our dataset contain at least
one call to postUrl. Of these apps, our analysis reports that
6.6% expose a call to postUrl to foreign intents. This result
is interesting in that the percentage of apps that fail to use
postUrl safely is quite high but the vulnerability is rare in
the overall app ecosystem.

E. Leaky URLs

10% of mobile web apps in our dataset register at least one
custom URL scheme. Of these apps, 16% of these apps (1.6%
of the total population) can leak a matching URL to another
app by overriding it with shouldOverrideUrlLoading
and sending it to the operating system as an implicit intent.
Among the vulnerable apps are 1,135 apps that leak URLs with
OAuth schemes in the manner described in Section [[II-B2

F. Expired Domains

While crawling the apps in our dataset we found that 193
mobile web apps loaded an expired domain directly—that is,
the expired domain was one of the initial URLs loaded by the
app. Because apps remain installed on user’s devices even after
a company goes out of business, this represents an interesting
new way that an attacker can deliver malicious content to a
mobile web app even if an app uses HTTPS properly and only
loads content from trusted domains.

Vuln % Relevant | % Vulnerable
Unsafe Navigation 15 34
Unsafe Retrieval 40 56
Unsafe SSL 27 29
Exposed POST 2 7
Leaky URL 10 16

TABLE II: A summary of vulnerability rates in mobile web apps. The
“% Relevant” column reports the percentage of apps in our dataset
that could exhibit a vulnerability because they have all of necessary
functionality and we could compute sufficient information about the
app. The “% Vulnerable” column reports the percentage of these apps
that contain vulnerabilities.

We took over seven expired domains, chosen based on the
popularity of the app that loaded that domain. We followed the
methodology for domain takeovers established by Nikiforakis
et al. [26]]. In total, we received 833 hits to these domains that
came from a mobile web app (determined by looking at the
X-requested-with header). This result demonstrates that
this is a feasible new method of attacking mobile web apps.

G. Library Vulnerabilities

Libraries that contain security vulnerabilities are very wor-
risome as a single vulnerability can be present in a large num-
ber of apps and developers generally do not audit libraries they
use for security vulnerabilities. Table 3 shows the percentage
of vulnerabilities that can be attributed to library code. It is
clear from these results that vulnerabilities in libraries are
as serious of a concern as vulnerabilities in main app code.
More than half of the observed vulnerabilities related to unsafe
retrieval of web content or ignoring SSL errors come from
library code. A few library classes in particular account for an
enormous number of vulnerabilities in our dataset. A single
faulty implementation of onReceivedSslError is present
in 10,175 apps and is the sixth most frequently occurring
implementation of onReceivedSslError in the entire app
ecosystem.

The overwhelming majority libraries that contain vulnera-
bilities are either ad libraries or mobile web app framework
libraries. Of the 50 library classes that contribute the most total
vulnerabilities across all apps, 28 (56%) are from framework
libraries and 22 (44%) are from ad libraries.

H. Vulnerability Trends

The huge majority of apps on the Google Play store are
only downloaded by a few users and many apps are published
but not maintained over time. An overall vulnerability rate

Vuln % Library Vulnerabilities
Unsafe Navigation 29
Unsafe Retrieval 51
Unsafe SSL 53
Exposed POST 41
Leaky URL 45

TABLE III: The percentage of vulnerabilities in each vulnerability
class that can be attributed to library code.

2.0

Download Count (thousands)
2 <1 100-1,000
=3 1-10 E—3J >1,000
||[E=3 10-100

=
%)

Normalized Vulnerability Rate
=
o

OO OO <E

[o]e) oQ °

Lo . e

e]e) [e]e

0O e
0.5 [e]e] oqg

Lo 0O

eo]e) oqg

)¢ OO

e]e) oQg

ofe] OO

[Qe) 0qQ 3
0.0 fo) (eYe} 2 OORNNTE [eYo)

Unsafe SSL

Unsafe Nav Unsafe Retrieval

N R e AN\
Exposed POST Leaky URL

Vulnerability Class

Fig. 4: A comparison of normalized vulnerability rates by app download count.

can therefore be misleading if most of the vulnerable apps
are either unpopular or long out of date. However, we find
that this is not the case for the vulnerabilities we studied.
Figure 4 shows the normalized vulnerability rate for each
vulnerability class broken down by app popularity. There is
no clear trend across all vulnerability classes, but there are
strong trends within vulnerability classes. The percentage of
apps that allow navigation to untrusted content, load content
over HTTP, and ignore certificate errors decreases with app
popularity. The percentage of apps that expose POST requests
to foreign intents and leak URLs increases dramatically with
app popularity. We suspect that vulnerabilities related to unsafe
web content are more well known in the community and the
major developers are addressing these vulnerabilities while
vulnerabilities related to exposed POST requests and leaky
URLs might be less well understood.

Figure 5 shows the normalized vulnerability rate for each
vulnerability class broken down by whether an app received an
update within one year of our collection date (June, 2014). We
might expect apps that receive regular updates would be less
likely to contain vulnerabilites but the data is more mixed,
showing different trends for different vulnerability classes.
Recently updated apps are less likely to ignore certificate
errors, expose POST request, and leak URLs but are more
likely to allow unsafe navigation to untrusted content. Among
all vulnerability classes the vulnerability rate is still high in
recently updated apps, indicating that users cannot stay safe
by only using up-to-date apps.

We also want to highlight a specific vulnerability related
to the JavaScript Bridge. Apps that load untrusted web con-
tent in some manner, use the JavaScript Bridge, and target
Android API version 4.1 or below are vulnerable to a remote
code execution attack. Malicious web content uses the Java
Reflection interface on an exposed Bridge Object to execute
arbitrary Java code with the permissions of the app [10].
This dramatically increases the capabilities of malicious web
content and exposes the user to all kinds of havoc. 56% of apps
that can load untrusted web content use the JavaScript Bridge

T T
23 Outdated Apps i
[Updated Apps

=
IS
T

-
N
T

=
o
T

o
0
T

Normalized Vulnerability Rate

Unsafe Nav Unsafe Retrieval Unsafe SSL Exposed POST Leaky URL

Fig. 5: A comparison of normalized vulnerability rates between
apps that have been updated or first published within one year of
data collection (June, 2014) and apps that have not been updated
recently. Note that the rates do not average to 1.0 because of different
population sizes.

(a much higher percentage than the general app population)
and 37% target Android API version 4.1 or below.

Because Android 4.2 was released more than two years ago
(November, 2012), we might expect that recently published or
updated apps would be safe against this exploit. Unfortunately
this is not the case. Figure 6 shows the percentage of vulnera-
ble apps using the JavaScript Bridge that target unsafe Android
API versions. We can see a clear trend downwards between
old and new apps but the percentage of apps that target unsafe
Android API versions, and thereby increase the severity of
attacks from untrusted web content, remains high.

1. Threats to Validity

The scale of this experiment demands that our analyses
are less computationally intensive, which can lead to both

100

FZA Outdated Apps
Recently Updated Apps

80

7 =

a0l RN N 7 I B s PR I

20

Remote Code Execution Vulnerability Rate

Unsafe Retrieval

Unsafe Na:/ig;awtioqn Unsafe“SSuLu *
Fig. 6: A comparison of Remote Excecution Exploit rates between

apps that have been updated or first published within one year of data
collection (June, 2014) and apps that have not been updated recently.

false positives (reporting a vulnerability when none exists) and
false negatives (failing to report a true vulnerability). Knowing
this, we designed our analyses to be conservative and avoid
false positives. This ensures that our measurements represent
a lower bound on the number of WebView vulnerabilities in the
Android ecosystem. However, there are still some opportunities
for false positives, which we address here.

The string analysis used to identify initial URLs is very
conservative. The analysis is intraprocedural to prevent call
graph imprecision from creating incorrect results and we treat
joins as assignments of unknown values so every reported URL
will be a true concrete parameter to a navigation method. The
only risk is if a call to 1oadUrl is dead code. We manually
analyzed 50 apps that contained reported initial URLs and
found no examples of dead LoadUrl calls that had reported
URL values.

We only report that an ignores certificate errors if an
implementation of onReceivedSslError calls proceed
on all code paths. While this approach will fail to report
apps that incorrectly validate certificates, it ensures that every
reported app contains an insecure implementation of on-—
ReceivedSslError.

Our analysis of shouldOverrideUrlLoading imple-
mentations is similarly conservative. Because we only report
the result of this method if the slice was able to execute
completely and without using unknown data, we can be sure
that any behavior we observe is identical to the behavior in
the running app.

The reachability analysis used to identify apps that expose
POST requests to foreign apps is the most likely to report false
positives. Rather than generating a call graph using points-
to sets, we only use the static type of receiver objects and
the class hierarchy to determine virtual method targets. This
can lead to spurious call edges and invalid paths from an
exposed app component to a POST request. Apps can also
include logic to validate incoming Intents, which will not be
captured by our analysis. We manually analyzed 50 apps that
our reachability analysis reported and found a false positive

rate of 16%. If this rate holds true across the entire dataset
then the true vulnerability rate among apps that use postUr1l
is 5.5%. We note that the false positives usually involved much
longer call chains than the true positives, which implies that
setting a maximum call chain length could reduce the false
positive rate.

J. Mitigation

Addressing these varied vulnerabilities is a serious chal-
lenge, but here we offer suggestions to Google Android and
mobile OS developers to help reduce the frequency or severity
of vulnerabilities unique to mobile web apps.

e Allow developers to specify a whitelist of trusted
domains in a declarative fashion in the app’s
Manifest. Today, developers must correctly imple-
ment both shouldOverrideUrlLoading and
shouldInterceptRequest to safely constrain
navigation. This change would ensure that safe navi-
gation control is foolproof.

e Allow developers to expose Bridge Objects to a
whitelist of domains. Presently, apps depend on cor-
rect navigation control to ensure that untrusted content
does not have access to the JavaScript Bridge. This
would reduce the severity of attacks available to
untrusted web content loaded in a WebView.

e Display information about the security of the user’s
connection. Right now there is no way for a concerned
user to know the status of his or her connection and
cannot make an informed decision to input sensitive
information.

e Display a warning in AndroidStudio on calls to
SslErrorHandler.proceed. A warning is al-
ready displayed when apps enable JavaScript and such
a warning would hopefully reduce the number of apps
that ignore any and all certificate errors.

e Allow developers to declare unique custom URL
schemes and ensure that no other installed app reg-
isters the same schemes. In Android 5.0 custom
permissions were changed to have a uniqueness re-
quirement [3]]. A similar feature for URL schemes
would ensure that apps cannot leak URLs with custom
schemes to foreign apps.

If followed, these recommendations will reduce both the
frequency and severity of mobile web app vulnerabilities.

VI. RELATED WORK

A number of studies have examined individual vulnera-
bilities related to the vulnerability classes we study. None
look at datasets of the same scale or are able to discuss
trends in vulnerable apps. In each case, as explained below,
our work expands beyond the prior understanding of these
vulnerabilities.

Luo et al. [25], Chin et al. [17], and Georgiev et al. [21]
studied attacks on mobile web apps from untrusted content.
Luo et al. [25] manually analyzed a small set of apps for
vulnerabilities but incorrectly assumed that mobile web apps

allow navigation to arbitrary web content and therefore failed
to explore the effect of navigation control on mobile web
app security. Chin et al. [17] built a static analyzer to find
apps that allow navigation to untrusted content. The authors
understand the importance of the shouldOverrideUrl-
Loading method but handle it using a simple heuristic that
fails to capture its behavior accurately. The authors also do not
consider implementations of shouldInterceptRequest
in their analysis. Georgiev et al. [21] studied the JavaScript
Bridge in mobile web apps developed using PhoneGap and
analyzed several thousand mobile web apps for vulnerabilities
but their experiment is limited to apps built using PhoneGap,
and, like Luo et al. [25], they do not explore the effect of
navigation control. Within the scope of attacks from untrusted
web content, our work extends beyond these results by accu-
rately capturing the effect of navigation control methods when
identifying apps that navigate to untrusted web content.

Fahl et al. [19] and Tenduklar et al. [28]] analyzed Android
apps for errors in their SSL. implementations and found that
many apps validated certificates incorrectly. Sounthiraraj et
al. [27] built a dynamic analysis tool to detect apps that
incorrectly validate SSL certificates. However, these studies
overlook onReceivedSslError as a method of incorrectly
validating SSL certificates and do not measure how fregently
developers implement it unsafely. Our results are therefore
orthogonal to these results and combine to demostrate that
incorrect use of SSL is a widespread problem in Android apps.

Chen et al. [|I5] manually studied several popular OAuth
providers for mobile apps and identified how the differences
between the mobile and browser environments can lead to
OAuth vulnerabilities. One vulnerability they describe is how
a leaky URL vulnerability can expose OAuth credentials to
malicious apps. Their work focuses specifically on OAuth and
does not consider the more general vulnerability class of leaky
URLSs or the broader vulnerability classes we consider.

Several studies have explored exposed app components
as a mechanism to perform privilege escalation attacks in
Android. Davi et al. [18] first demonstrated that inter-app
communication can leak privileged operations to other apps.
Grace et al. [22] and Lu et al. [24] built systems for identifying
apps that leak privileges. Felt et al. [[20] proposed a mechanism
for preventing privilege leaks using IPC inspection, and Bugiel
et al. [14]] provided another solution to prevent privilege
leaks at the operating system level. The mechanism for these
vulnerabilities is similar to the mechanisms behind the exposed
POST request vulnerability but represent attacks on the mobile
device and its APIs instead of an attack on a mobile web
application.

Other studies have explored different vulnerabilities in
mobile web apps than we study. Jin et al. [23]] built a tool
to analyze mobile web apps developed using PhoneGap for
an XSS-like vulnerability where untrusted data retrieved from
channels like SMS and barcodes is used to construct scripts
that are rendered in a WebView. Wang et al. [30] examined how
malicious web content can force inter-app communication and
exploit apps (whether they are mobile web apps or traditional
apps) that register custom URL patterns. This vulnerability can
be seen as the inverse of the leaky URL vulnerability, where
a untrusted URL load is forced upon an app rather than a
trusted URL load leaking to an untrusted app. The authors

manually analyzed a small set of popular apps and found
several vulnerabilities. They proposed a defense involving
attaching labels to inter-app messages with an origin and
enforcing same-origin policies on the communication channel.

VII. CONCLUSION

While allowing rich interaction between embedded web
content and app code, mobile web apps also present security
problems beyond those otherwise associated with the mobile
platform or the web. We selected several vulnerabilities in
mobile web apps and developed scalable analyses to identify
these vulnerabilities. We analyzed a large dataset of 998,286
mobile web apps and found that 28% of the apps contained
at least one security vulnerability. Our analyses provide a
conservative underestimate of the true vulnerability rate for
the most common vulnerabilities in our dataset so this result
represents a lower bound on the number of vulnerable apps
in the wild. We explored trends in vulnerable apps and found
that vulnerabilities are present across the entire app ecosystem,
including in libraries and the most popular apps. Finally, we
listed mitigations that involve changes to the Android APIs that
will reduce the frequency and severity of these vulnerabilities.

REFERENCES

[1] plus.google.com/+AdrianLudwig/posts/Imd7ruEwBLEF. Acessed: 2015-
1-28.

[2] About Apache Cordova. cordova.apache.org/#about. Accessed: 2015-
1-28.

[3] Android 5.0 Behavior Changes. developer.android.com/about/versions/
android-5.0-changes.html. Accessed: 2015-1-28.

[4] Android Browser Same Origin Policy
rafayhackingarticles.net/2014/08/android-browser-same-origin-
policy.html. Acessed: 2015-1-28.

[5] Android Platform Versions. developer.android.com/about/dashboards/
index.html. Accessed: 2015-1-28.

[6] Apktool. code.google.com/p/android-apktool, Accessed: 2014-2-14.

[7] Building Web Apps in WebView. developer.android.com/guide/
webapps/webview.html, Accessed: 2015-1-28.

[8] PhoneGap. phonegap.com/about. Accessed: 2015-1-28.

[9] Stack Exchange Data Dump. archive.org/details/stackexchange. Ac-
cessed: 2015-1-28.

[10] WebView addJavascriptinterface Remote Code Execution.
labs.mwrinfosecurity.com/blog/2013/09/24/webview-
addjavascriptinterface-remote-code-execution. Accessed: 2015-1-28.

[11] BALL, T., AND HORWITZ, S. Slicing Programs with Arbitrary Control-
Flow. In Proceedings of the International Workshop on Automated and
Algorithmic Debugging (1993).

[12] BARTEL, A., KLEIN, J., LE TRAON, Y., AND MONPERRUS, M.
Dexpler: Converting Android Dalvik Bytecode to Jimple for Static
Analysis with Soot. In Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program Analysis (2012).

[13] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Securing Frame
Communication in Browsers.

[14] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T., SADEGHI, A.-
R., AND SHASTRY, B. Towards Taming Privilege-Escalation Attacks
on Android. In Proceedings of the 19th Symposium on Network and
Distributed System Security (2012).

[15] CHEN, E. Y., PEI, Y., CHEN, S., TIAN, Y., KOTCHER, R., AND
TAGUE, P. Oauth demystified for mobile application developers. In
Proceedings of the 21st ACM Conference on Computer and Communi-
cations Security (2014).

[16] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D. Ana-
lyzing Inter-Application Communication in Android. In Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (2011).

Bypass.

developer.android.com/about/versions/android-5.0-changes.html
developer.android.com/about/versions/android-5.0-changes.html
developer.android.com/about/dashboards/index.html
developer.android.com/about/dashboards/index.html
code.google.com/p/android-apktool
developer.android.com/guide/webapps/webview.html
developer.android.com/guide/webapps/webview.html
archive.org/details/stackexchange

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

CHIN, E., AND WAGNER, D. Bifocals: Analyzing WebView Vulnera-
bilities in Android Applications. In Proceedings of the International
Workshop on Information Security Applications (2013).

Davi, L., DMITRIENKO, A., SADEGHI, A.-R., AND WINANDY, M.
Privilege Escalation Attacks on Android. In Proceedings of the 13th
Information Security Conference. 2010.

FAHL, S., HARBACH, M., MUDERS, T., BAUMGARTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory Love
Android: An Analysis of Android SSL (In)Security. In Proceedings of
the 19th ACM Conference on Computer and Communications Security
(2012).

FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND CHIN,
E. Permission Re-Delegation: Attacks and Defenses. In Proceedings
of the 20th USENIX Security Symposium (2011).

GEORGIEV, M., JANA, S., AND SHMATIKOV, V. Breaking and Fix-
ing Origin-Based Acces Control in Hybrid Web/Mobile Application
Frameworks. In Proceedings of the 21st Symposium on Network and
Distributed System Security (2014).

GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In
Proceedings of the 19th Symposium on Network and Distributed System
Security (2012).

JiN, X., Hu, X., YING, K., Du, W., YIN, H., AND PERI, G. N.
Code injection attacks on html5-based mobile apps: Characterization,
detection and mitigation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (2014).

Lu, L., L1, Z., WU, Z., LEE, W., AND JIANG, G. Chex: statically
vetting android apps for component hijacking vulnerabilities. In
Proceedings of the 2012 ACM Conference on Computer and Commu-
nications security (2012).

Luo, T., Hao, H., DU, W., WANG, Y., AND YIN, H. Atacks on
WebView in the Android System. In Proceedings of the 27th Computer
Security Applications Conference (2011).

NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A., ACKER, S. V.,
JOOSEN, W., KRUEGEL, C., PIESSENS, F., AND VIGNA, G. You
Are What You Include: Large-scale Evaluation of Remote JavaScript
Inclusions. In Proceedings of the 19th ACM Conference on Computer
and Communications Security (2012).

SOUNTHIRARAJ, D., SAHS, J., GREENWOOD, G., LIN, Z., AND
KHAN, L. Smv-hunter: Large scale, automated detection of ssl/tls man-
in-the-middle vulnerabilities in android apps. In Proceedings of the 19th
Symposium on Network and Distributed System Security (2014).

TENDULKAR, V., AND ENCK, W. An application package configuration
approach to mitigating android ssl vulnerabilities. In Mobile Security
Technologies (2014).

VALLEE-RAI R., Co, P., GAGNON, E., HENDREN, L., LAM, P., AND
SUNDARESAN, V. Soot: A Java Bytecode Optimization Framework. In
Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research (1999).

WANG, R., XING, L., WANG, X., AND CHEN, S. Unauthorized Origin
Crossing on Mobile Platforms: Threats and Mitigation. In Proceed-
ings of the 20th ACM Conference on Computer and Communications
Security (2013).

WEISER, M. Program Slicing. In Proceedings of the 5th International
Conference on Software engineering (1981).

	Introduction
	Background
	Inter-App Communication
	Controlling Navigation
	JavaScript Bridge

	Mobile Web App Security
	Adversary Model
	Studied Vulnerabilities
	Loading Untrusted Content
	Leaky URLs
	Exposed Stateful Navigation

	Analyses
	Reachable Web Content
	Initial Resources
	Handling Navigation Control
	Crawling

	Exposed Stateful Navigation
	Mishandled Certificate Errors
	Leaky URLs

	Results
	Unsafe Navigation
	Unsafe Content Retrieval
	Unsafe Certificate Validation
	Exposed POST Requests
	Leaky URLs
	Expired Domains
	Library Vulnerabilities
	Vulnerability Trends
	Threats to Validity
	Mitigation

	Related Work
	Conclusion
	References

