

Tor Experimentation Tools

Fatemeh Shirazi

TU Darmstadt / KU Leuven Darmstadt, Germany fshirazi@cdc.informatik.tu-darmstadt.de

Matthias Göhring

TU Darmstadt Darmstadt, Germany de.m.goehring@ieee.org **Claudia Diaz**

KU Leuven / iMinds Leuven, Belgium claudia.diaz@esat.kuleuven.be

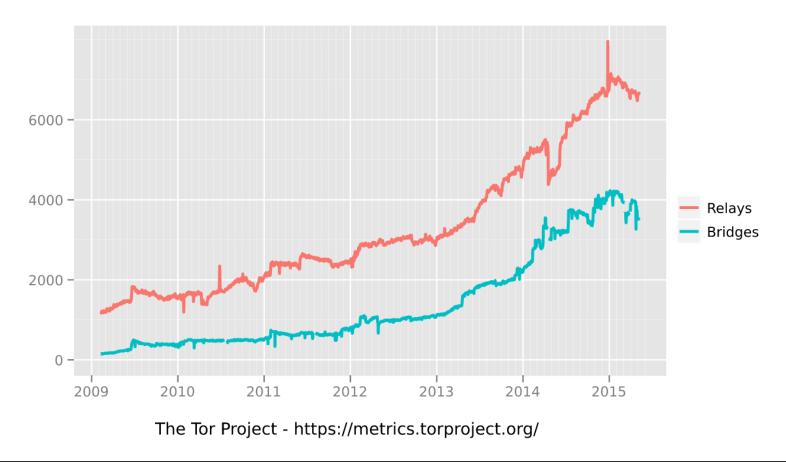
Tor Experimentation Tools

- Background
- Network Statistics
- \succ How it works
- CollecTor
- Research

Tor Basics

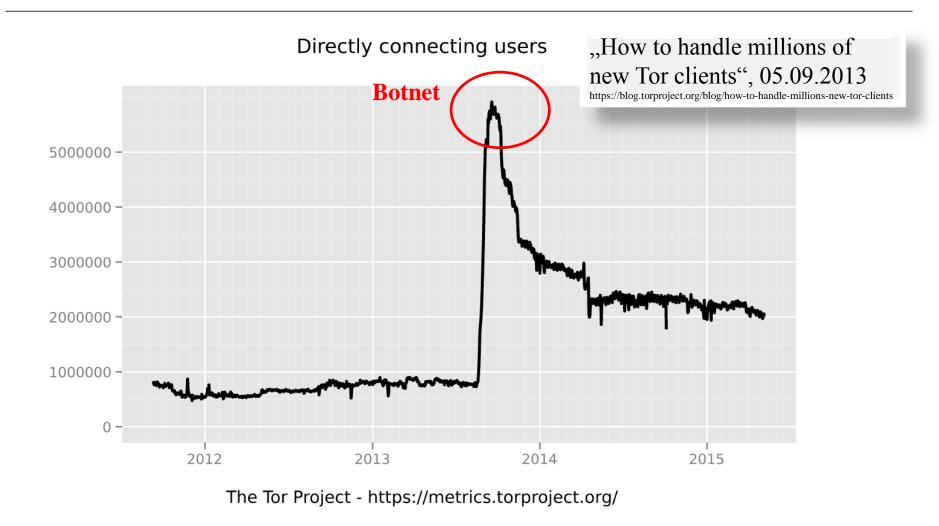
- Distributed overlay anonymity network
- Operated by volunteers around the world
- Developed and maintained by The Tor Project (non-profit)
- Active research community

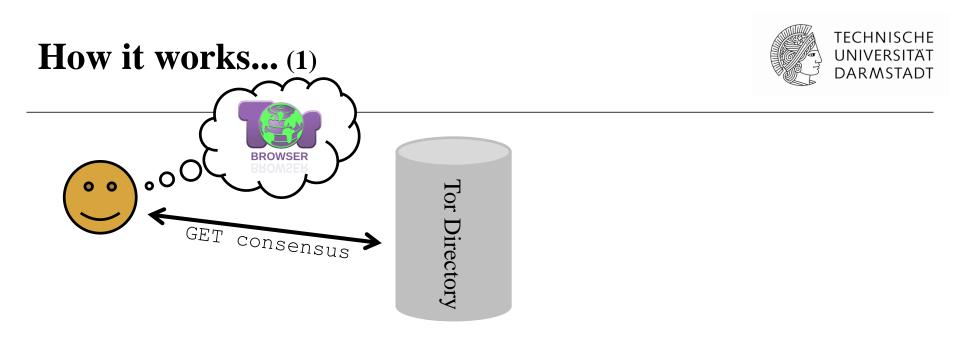
Network Components



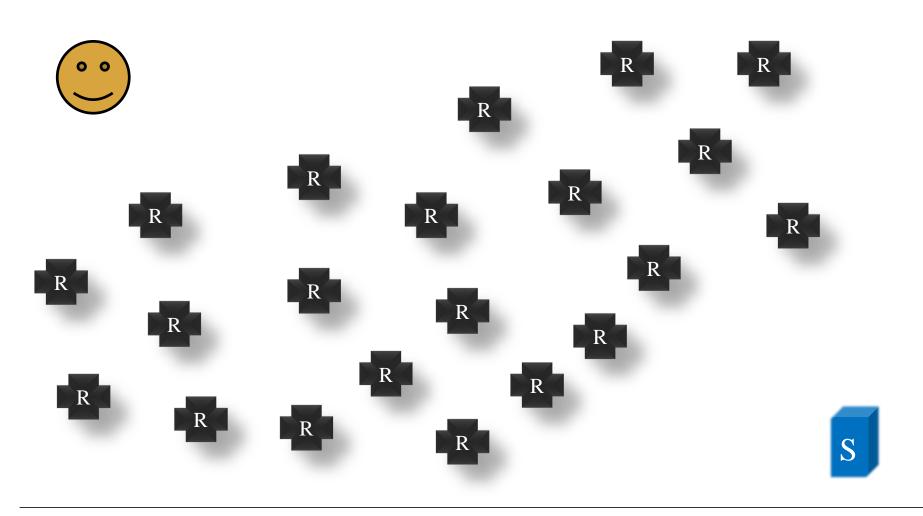
- Relays: Onion Router (OR)
 - ➢ Entry guard
 - Middle node
 - ➢ Exit node
- R R S Bi-directional Circuit
- Client Software: Onion Proxy (OP)
- Directory Servers (Authorities and Mirrors)
- Bridges (,, hidden " relays)

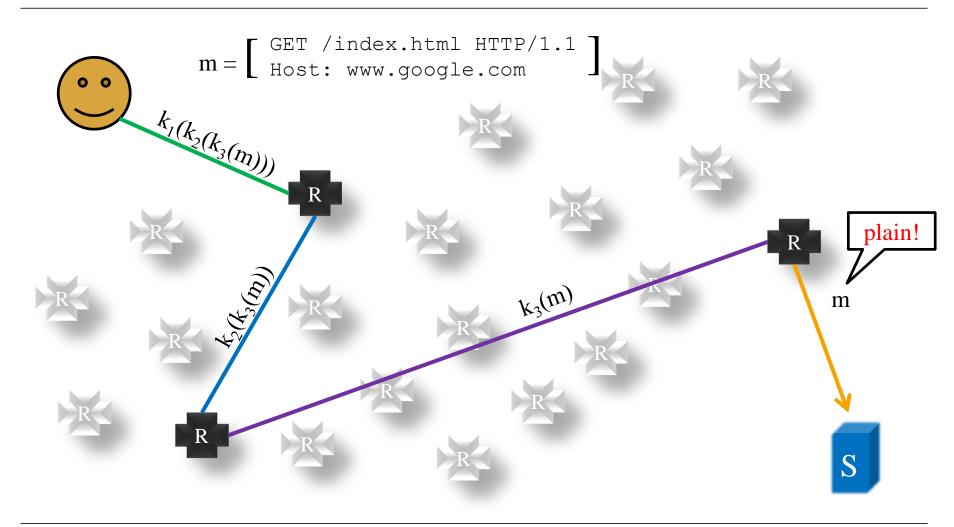
Tor Network Size



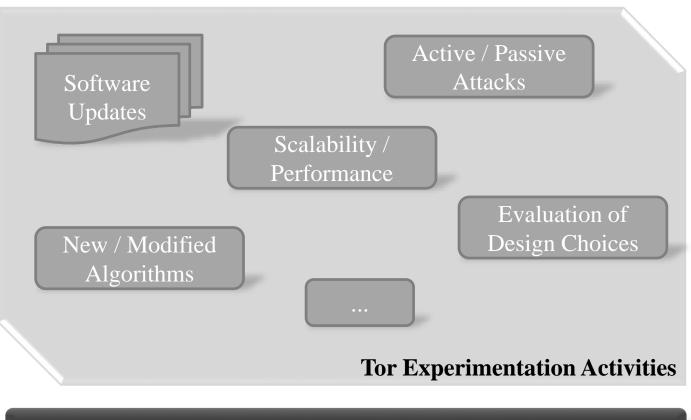

Number of relays

Tor Users




How it works... (2)

How it works... (3)


CollecTor Consensuses and Server Descriptors

- Available at <u>https://collector.torproject.org</u>
- *Consensus* of the directory authorities
 - Published every hour
 - Defines network state as list of relays
- More details per relay in *Server Descriptors*
- Example entry of a consensus document:
- r NotInMyBackyard 3B2fxLXY5M+0cu4Pvqgcv1cY7hY pBqKOtU+Wxk9GG6woIgoXZV0jU4 2015-05-01 16:47:18 87.106.21.77 9001 0 s Fast HSDir Running Stable Valid
- v Tor 0.2.5.12
- w Bandwidth=30
- p reject 1-65535

Research Privacy Engineering

Experimentation is mandatory for privacy research on Tor!

Tor Experimentation Tools

- Live Experimentation
- > Requirements
- Categorization
- Evaluation
- Simulation vs. Emulation

Live Experimentation

Limitations: **Advantages:** the **Syperiment** Low costs byed network e.g. running a relay vironmosit For mosit Easy to adapt / extend software versions Tor is open-source esults cannot be reproduced Most real Might threaten user's anonymity and QoS [6] Safe & Realistic Environment Required

Requirements

Flexibility & Control

Categorization – Evaluation

- 1. Live Tor Network
- 2. Analytical / Theoretical Modeling
- 3. Private Tor Networks
- 4. Overlay Testbed Deployments
- 5. Simulation
- 6. Emulation

Overlay Testbeds

- Services:
 - PlanetLab
 - Emulab
 - Deter
- Limitations:
 - Scalability
 - Results depend on current network state
 - \rightarrow cannot be reproduced (easily)
 - Shared resources

Categorization – Evaluation

- 1. Live Tor Network
- 2. Analytical / Theoretical Modeling
- 3. Private Tor Networks
- 4. Overlay Testbed Deployments
- 5. Simulation
- 6. Emulation

Simulation vs. Emulation

Simulation

- Abstract model of the system, assumptions for simplicity
- Virtual time
- Reduced hardware requirements
- Improved scalability

Emulation

- Little to no assumptions, all operations performed
- Real time
- Substantial hardware requirements
- Scalability limited
 - Due to required hardware

Tor Experimentation Tools

- > Metrics
- Simulators
 - ➤ Shadow, TorPS, COGS
- ➤ Emulators
 - ExperimenTor, SNEAC

7. Modeling adversaries 8. Currently maintained? 9. Runs unmodified Tor source code? To 10. Resource requirements

Network effects (e.g. congestion)

Tool characteristics

Experiment characteristics

Evaluation Metrics

1. Size / number of relays

Routing approach

Number of users

Usage patterns

Topology

2.

3.

4.

5

6.

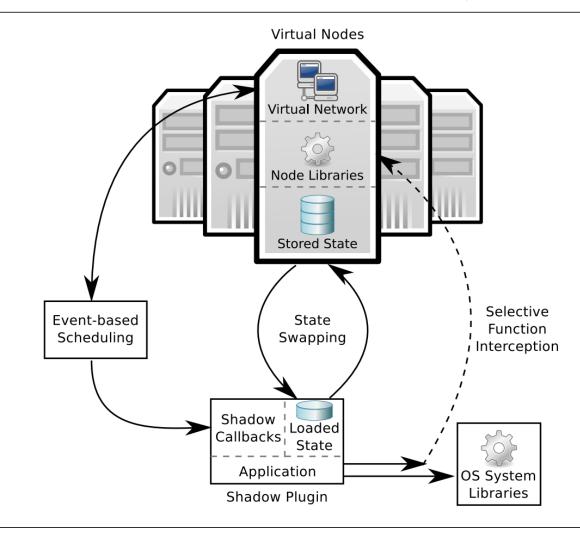
20

TECHNISCHE

DARMSTADT

Shadow [8] Jansen et al.

- General-purpose, discrete-event simulator
- Runs on a single machine with user privileges
- Applications run as plugins
 - Tor plugin: Scallion


Limitations:

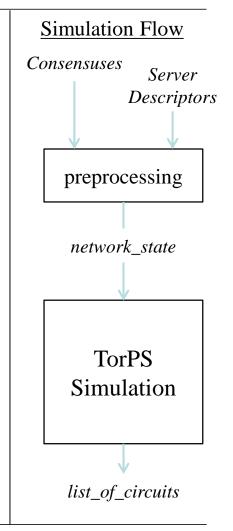
- Scalability limited by resources of a single host
- Simplifications might influence results, e.g.
 - Cryptographic operations are simulated by time delays
 - Downscaling of experiments

Shadow: Simulation Flow

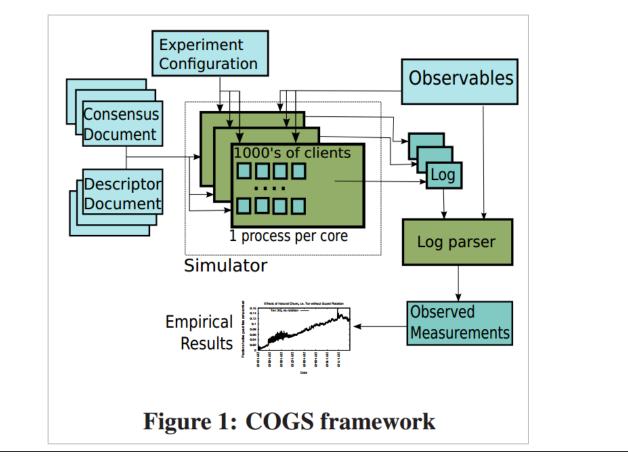
TECHNISCHE UNIVERSITÄT DARMSTADT

Source: [8]

Tor Path Simulator (TorPS) [7] Johnson et al.



- Specialized Tor simulator
- Simulate relay selection for circuit construction
- Intention: Test different algorithms


Limitations:

- Underlying network effects ignored
- Reimplementation of algorithms (python)

Changing of the Guards (COGS) [5] Elahi et al. Simulator

Purpose: Analyze effects of entry guard selection on user privacy

TECHNISCHE UNIVERSITÄT DARMSTADT

ExperimenTor [9] Bauer et al.

- General-purpose Tor emulator
- At least two hosts required:
 - (Emulator core)+: Emulating the network topology
 - (Edge node)+: Running unmodified applications, e.g.
 - Web browsers, BitTorrent clients, ...

Limitations:

- Based on an outdated version of FreeBSD
- No longer available & maintained
- \rightarrow Supposed to be replaced by SNEAC

ExperimenTor

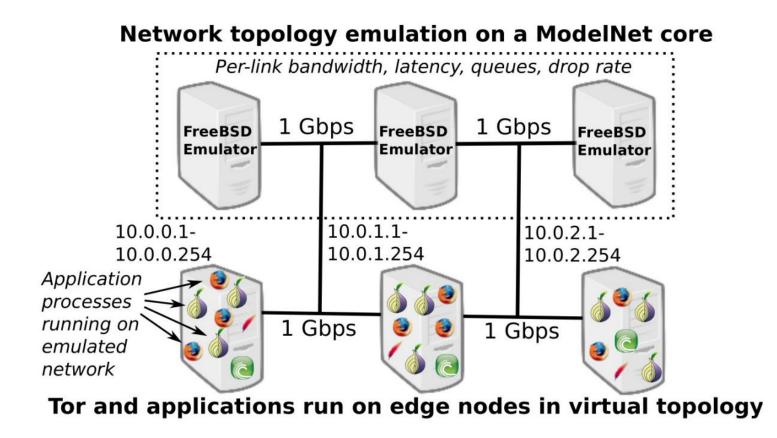
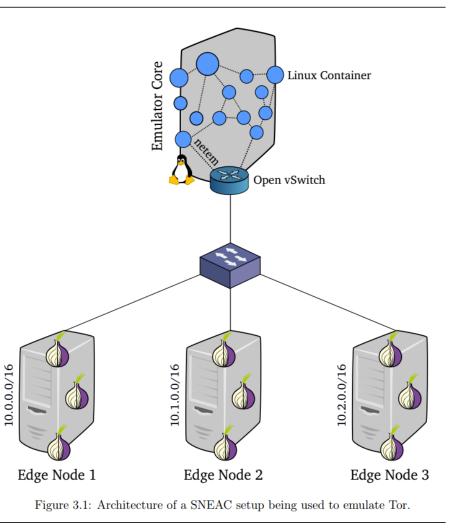


Figure 2: ExperimenTor system architecture

Source: [9]


SNEAC [18] Singh

Scalable Network Emulator for Anonymous Communication

Limitations:

- Hardware requirements lim scalability!
- Requires own data extractic
- User Model?

Emulator

Comparison

Metric	Shadow	TorPS	ExperimenTor
1. Size / number of relays	downscaling, simulation with 500+ re- lays possible	no downscaling	limited by available resources
2. Routing approach	not using additional weighting in node selection	ignoring paths being dropped due to timeouts	-
3. Topology	geographic distribution ignored, band- width distribution based on Tor	both same as Tor	geographic distribution of Tor ignored, bandwidth distribution based on Tor
4. Network effects (e.g. con- gestion)	yes	no	yes (simplified)
5. Number of Tor users	downscaled	no	downscaled
6. Usage pattern of Tor users	5 usage patterns	5 usage patterns	2 usage patterns
7. Modeling adversaries	possible	possible	possible
8. Currently being maintained	yes	yes	no
9. Using original Tor code	yes	no, Python application	yes
10. Required resources	single host, user privileges	single host, user privileges	min. 2 hosts, high resource requirements

Conclusion

- No standardized experimentation approach
 - Simulation vs. emulation
- Experimentation results are based on specific tools
 - \rightarrow cannot be compared easily
- Inherent complications experimenting with an anonymity network
- General problems:
 - User model / traffic
 - Scalability / downscaling

Thank you for your attention!

Questions?

Matthias Göhring

de.m.goehring@ieee.org

Acknowledgements

The authors would like to thank

- Rob Jansen
- Aaron Johnson
- Ian Goldberg
- Kevin Bauer
- Sukhbir Singh

References

- [5] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg, "Changing of the guards: A framework for understanding and improving entry guard selection in tor," in Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2012), ACM, October 2012.
- [6] K. Loesing, S. J. Murdoch, and R. Dingledine, "A case study on measuring statistical data in the Tor anonymity network," in Proceedings of the Workshop on Ethics in Computer Security Research (WECSR 2010), LNCS, Springer, January 2010.
- [7] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, "Users get routed: Traffic correlation on tor by realistic adversaries," in Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS '13, ACM, 2013.
- [8] R. Jansen and N. Hopper, "Shadow: Running tor in a box for accurate and efficient experimentation.," in Proceedings of the Network and Distributed System Security Symposium -NDSS'12, The Internet Society, 2012.
- [9] K. Bauer, D. Mccoy, M. Sherr, and D. Grunwald, "Experimentor: A testbed for safe and realistic tor experimentation," in In: Proceedings of the USENIX Workshop on Cyber Security Experimentation and Test (CSET), 2011.
- [18] S. Singh, "Large-scale emulation of anonymous communication networks," Master's thesis, University of Waterloo, 2014.