A Comparison of Secure Two-Party Computation Frameworks

Jan Henrik Ziegeldorf, Jan Metzke, Martin Henze, Klaus Wehrle Communication and Distributed Systems (COMSYS), RWTH Aachen, Germany

Motivating Scenario: Genetic Testing

Data leaks

816,324,756 RECORDS BREACHED

(Please see explanation about this total.)

from 4,517 DATA BREACHES made public since 2005

www.privacyrights.org/data-breach

Identification

Discrimination

Motivating Scenario: Genetic Testing

IPR & Business Secrets

Motivating Scenario: Genetic Testing

SECURE TWO-PARTY COMPUTATION (STC)

- Rigorous privacy protection
- Any efficiently computable functionality

Two flavors of STC

GARBLED CIRCUITS

HOMOMORPHIC ENC

Two flavors of STC

Desiderata

GOAL: USE STC AS BLACKBOX

Formal Methods in Systems Engineering

+ more

STC in the wild

SO, WHY IS STC RARELY USED PRACTICALLY?

Processing Overheads

- Crypto ops
- Data blow-up
- Memory

Communication Overheads

- Interaction
- Data blow-up

Development & Usability

- Language support
- Abstractions
- (Documentation)

Dependable benchmarks and comparison!

Methodology

Benchmarks

- Basic operations:
 - Arithmetic Operations: ADD and MULT
 - ► Logical Operations: MIN and ARGMIN
- Advanced operations:
 - MATRIX-MULT, SORT, more in work...

Evaluation Setup

Framework comparison

How comprehensive are STC frameworks?

	Fairplay	SeComLib	TASTY	mightbeevil	CBMC-GC
Approach	GC	HE	GC/HE	GC	GC
Type	Compiler	Library	Interpreter	Framework	Compiler
Language	SFDL	C++	TASTYL	Java	ANSI-C
Network	\checkmark	X	\checkmark	\checkmark	\checkmark
Addition	√	✓	✓	✓	✓
Multiplicati	ion 🗶	\checkmark	(√)	X	\checkmark
Comparison	n √	\checkmark	\checkmark	\checkmark	\checkmark
Minimum	X	\checkmark	(√)	(\checkmark)	X
Argmin	Х	X	Х	X	X

Standard implementation of advanced operations using basic ops!

GC vs. HE – which approach to choose?

Arithmetic operations

- HE performs overall ok
- GC still manageable

Logical operations

- GC very fast
- HE almost unusable

STC on mobile devices?

Processing

- Significant impact on HE
- Smaller but perceivable for GC

Bandwidth

- Tremendous impact on GC
- HE impacted mostly by latency

STC on mobile devices?

Is new functionality handled efficiently?

Yes!

Example: Minimum in CBMC-GC

No!

Example: Sorting in CBMC-GC

Is new functionality handled efficiently?

Qualitative comparison

Which framework is the most usable?

Lines of Code

- Compiler approach wins
- Library approach usable
- mightbeevil too low-level

Failures

- GC approaches limited by RAM
- HE limited by time-out

Conclusion and Directions

GCs more promising than HE

- Lower bounds on circuit sizes? (e.g., Half-Gates, Eurocrypt'15)
- Hybrid Approaches? (e.g., ABY, NDSS'15)
- Reducing memory of GC? (e.g., *Tiny-Garble, S&P'15*)

Mobile and interactive STCs

Bandwidth-optimized STC?

Implementing / extending functionality

How to guide the inexperienced STC developer?

Many open engineering issues

- Flexible STCs with inputs of unknown lengths?
- Language support for STC?

Further results, code and documentation

http://www.comsys.rwth-aachen.de/short/iwpe15/

ziegeldorf@comsys.rwth-aachen.de

http://www.comsys.rwth-aachen.de/team/henrik-ziegeldorf/

