
The pitfalls of protocol design
Attempting to write a formally verified PDF parser

Andreas Bogk

Principal Security Architect
HERE

Berlin, Germany
andreas.bogk@here.com

Marco Schöpl

Institut für Informatik
Humboldt-Universität

Berlin, Germany
schoepl@informatik.hu-berlin.de

Abstract

Parsers for complex data formats generally present
a big attack surface for input-driven exploitation. In
practice, this has been especially true for implemen-
tations of the PDF data format, as witnessed by
dozens of known vulnerabilities exploited in many real
world attacks, with the Acrobat Reader implementation
being the main target. In this report, we describe
our attempts to use Coq, a theorem prover based on
a functional programming language making use of
dependent types and the Curry-Howard isomorphism,
to implement a formally verified PDF parser. We ended
up implementing a subset of the PDF format and
proving termination of the combinator-based parser.
Noteworthy results include a dependent type represent-
ing a list of strictly monotonically decreasing length of
remaining symbols to parse, which allowed us to show
termination of parser combinators. Also, difficulties
showing termination of parsing some features of the
PDF format readily translated into denial of service
attacks against existing PDF parsers—we came up
with a single PDF file that made all the existing PDF
implementations we could test enter an endless loop.

1. Introduction

The work we are presenting here was inspired by

a combination of two research areas we are interested

in: usage of dependently typed programming languages

for formal verification of software, and aspects of

language theory on IT security, an area by now known

as LangSec.

Since the PDF file format is not only widely used,

but also quite often used as an attack vector in IT

security breaches, we focused on writing a PDF file

format parser. As the platform for implementation, we

chose Coq. Even though Coq is primarily a proof

assistant, and a research platform for formal proofs

based on the calculus of constructions and the Curry-

Howard isomorphism, it doubles as a functional pro-

gramming language with support for dependent types.

It has been shown that writing real world software by

using code extraction from Coq is entirely feasible, and

interesting correctness results for such software have

been shown.[4]

In this paper, we will first look into the general

problem of writing parser combinators in Coq, and

then look at the practical problems using them for

parsing PDF files that we encountered.

2. Parser combinators in Coq

Our implementation of a PDF parser uses the well-

known pattern of parser combinators[2] often used in

functional languages. The implementation of parser

combinators in Coq is mostly a straightforward exer-

cise. However, certain constructs involving recursion

lead to problems. In this section, we will look at our

initial attempt that fails at recursion, and then examine

the refinement that led to a successful implementation.

2.1. Initial attempt

Initially, we defined a parser for a type T to be a

function taking a list of tokens (in our case, ascii
characters), and returning either some T plus a list of

remaining unparsed tokens, or a parse error with some

suitable error message:

Require Import Ascii.
Require Import Coq.Lists.List.

2014 IEEE Security and Privacy Workshops

© 2014, Andreas Bogk. Under license to IEEE.

DOI 10.1109/SPW.2014.36

198

2014 IEEE Security and Privacy Workshops

© 2014, Andreas Bogk. Under license to IEEE.

DOI 10.1109/SPW.2014.36

198

2014 IEEE Security and Privacy Workshops

© 2014, Andreas Bogk. Under license to IEEE.

DOI 10.1109/SPW.2014.36

198



Definition parser’ (T : Type) :=
list ascii ->
optionE (T * list ascii).

Here, optionE is the familiar option type (or

Maybe monad to Haskell programmers) that supports

an additional error message for the None case:

Inductive optionE (X:Type) : Type :=
| SomeE : X -> optionE X
| NoneE : string -> optionE X.

This definition already allows us to implement a

number of interesting combinators, such as one that

matches on a single arbitrary character:

Definition parse_one_char’
: parser’ ascii :=

fun xs =>
match xs with
| [] =>
NoneE "end of token stream"

| (c::t) => SomeE c
end.

or one that sequences two parsers:

Definition sequential’ {A B : Set}
(a : parser’ A) (b : parser’ B)
: parser’ (A*B) :=

fun xs =>
match a xs with
| SomeE (val_a, xs’) =>
match b xs’ with
| SomeE (val_b, xs’’) =>
SomeE ((val_a, val_b), xs’’)

| NoneE err => NoneE err
end

| NoneE err => NoneE err
end.

However, the following implementation of the

Kleene star operator, which repeatedly applies the

same parser for some type T to generate a list of

T, although looking like the natural solution to the

problem, fails:

(* Broken: the fixpoint recursion
is not allowed *)

Definition many’ {T : Set}
(p : parser’ T) : parser’ (list T) :=

fun xs => many_helper’ T p [] xs.
Fixpoint many_helper’ (T : Set)
(p : parser’ T) (acc : list T)
(xs : list ascii)
: optionE (list T * list ascii) :=

match p xs with
| NoneE err => NoneE err
| SomeE (t, xs’) =>
match many_helper _ p (t::acc) xs’
with
| NoneE _ =>
SomeE (rev (t::acc), xs’)

| SomeE (acc’, xs’’) =>
SomeE (acc’, xs’’)

end
end.

The reason for this is that Coq doesn’t allow un-

bounded recursion, it wants to see proof that the

recursion terminates. This is because infinite recursion

gives rise to circular and thus unsound proofs under

the Curry-Howard isomorphism in Coq. The language

specification explicitly requires structural induction on

one of the parameters in order for the Fixpoint
definition to succeed, or alternatively a measure on

one of the arguments that provides an equivalent of

structural induction.[5]

This restriction of arbitrary recursion might seem

like a burden at a first glance. However, on further

examination it becomes clear that guaranteed termina-

tion is actually an interesting and useful property of a

parser algorithm. We’re getting a form of correctness

validation out of this behaviour of Coq.

In a lot of cases, when writing a Fixpoint recur-

sive function definition, Coq can identify a function

argument that is structurally decreasing. By the nature

of inductive construction of objects, it follows that

the function eventually terminates. For instance, in a

function like:

Fixpoint plus (n m:nat) : nat :=
match n with
| O => m
| S p => S (plus p m)
end.

Coq will detect that the argument n is structurally

decreasing and the function plus is guaranteed to ter-

minate. It will complain that it can’t find a structurally

decreasing argument in our above definition of many’,

though. There is a syntax to specify which of the

arguments is structurally decreasing. It isn’t of much

help here, as indeed the above definitions allow for

infinite recursion. Consider a construction that consists

of a parser that matches the empty string ε:

Definition match_epsilon
: parser’ unit :=

fun xs => SomeE (tt, xs).

199199199



and applying the many’ Kleene star operator to it:

Definition match_many_epsilon
: parser’ (list unit) :=

many’ match_epsilon.

It should be obvious that when calling

match_many_epsilon with any argument, it

keeps matching the empty string indefinitely, without

ever making any parsing progress. So in fact, Coq

is right about complaining about many’, we have

shown a case where it won’t terminate.

2.2. Solution: dependent types

The usual workaround given in the literature[1] is

so-called step-indexed recursion. The key idea here is

that an extra argument, the step index, is passed to the

recursive function. On the initial call, the maximum

number of allowed recursion steps is passed to the

function. On every recursion step, the index is reduced

by one. When it reaches zero, the computation is

aborted. The step index takes the role of the structurally

decreasing argument that Coq wants to see.

Step-indexed recursion seemed like an easy enough

way out. It even matches practical constraints of com-

putation, like the finite amount of RAM found in

computers, that put a bound to the maximally possible

recursion steps anyways. However, it seemed a bit ar-

bitrary, and it essentially also shadows real problems of

non-termination as the above match_any_epsilon
case. So we decided to see whether we can come

up with a recursion approach that retains the analysis

capabilities we wanted.

Our approach is based on the intuition of “making

progress” during parsing, as used in the argument

above. It turns out that the key to actually come up with

a parser combinator construction and show termination

lies within formalization of this idea. It is easy enough

to reason that as long as every parser step keeps

consuming input tokens, we will finally reach the end

of our token list, and this parsing will terminate.

Revisiting our initial definition of the parser’
type:

Definition parser’ (T : Type) :=
list ascii
-> optionE (T * list ascii).

we notice that the type doesn’t express any relation-

ship between the list of tokens used as the input to

the function and the list of remaining tokens returned

from the function. However, we do know that there is

one: the returned list of tokens is supposed to be the

non-consumed rest of the token list that was used as

the input to the parser.

By making use of dependent types, we can ac-

tually come up with a type that formally cap-

tures this idea. Dependent types, generally speaking,

are types depending on values. Of particular inter-

est here are dependent pair types, also known as

sigma types, which can be understood as existential

quantifiers. Coq comes with a syntax for this that

closely resembles mathematical notation: we can use

{ x : T | P x } to express the type of all T for

which the proposition P holds. For instance, given

a type nat for natural numbers, and a proposition

prime : nat -> Prop that holds when its argu-

ment is a prime number, we can express the type

of all primes as { x : nat | prime x}. Actual

instances of this type can be understood as the product

type of a value, and a proof that the proposition holds

for any possible value at this moment. This proof is

a first class object, and can be passed around and

manipulated, e.g. to construct other instances of the

same type.

Using dependent types, we can construct a better

type for parser. The first step is a definition of a

predicate sublist l l’, which expresses that a list

l is the list remaining of another list l’ after removing

an arbitrary non-zero number of elements from the

beginning of l’. We use an inductive definition of this

predicate instead of a computational, to make proofs

easier later:

Inductive sublist
: list A -> list A -> Prop :=

| sl_tail : forall (c : A) l,
sublist l (c::l)

| sl_cons : forall (c : A) l’ l,
sublist l’ l -> sublist l’ (c::l).

Given this predicate, we can now properly imple-

ment the parser type:

Definition parser (T : Type) :=
forall l : list ascii, optionE (T *
{l’ : list ascii | sublist l’ l}).

This now formally captures our intuitive notion that

every parser step should make progress.

Implementation of parser combinators becomes a bit

more intricate now. We have to make sure to properly

manipulate proof objects for the dependent pair. We

do that by creating dependent pairs and destructuring

them in pattern matching using the exist constructor.

For instance, the definition of sequential now

becomes:

200200200



Definition sequential {A B : Set}
(a : parser A) (b : parser B)
: parser (A*B) :=

fun xs =>
match a xs with
| SomeE (val_a, exist xs’ H) =>
match b xs’ with
| SomeE (val_b, exist xs’’ H’) =>
SomeE ((val_a, val_b),

exist _ xs’’
(sublist_trans H’ H))

| NoneE err => NoneE err
end

| NoneE err => NoneE err
end.

What’s going on here is that running the first

parser a on the input returns a list of remaining

tokens xs’ and a proof object H that states that

sublist xs’ xs holds. Calling the parser b on

xs’ in turn produces a list of finally remaining

tokens xs’’, plus a proof object H’ stating that

sublist xs’’ xs’ holds. Using a theorem stat-

ing that sublist is transitive, easily shown using

induction:

Theorem sublist_trans
: forall l l’ l’’,
sublist l l’ -> sublist l’ l’’
-> sublist l l’’.

Proof.
intros l l’ l’’ H0 H;
generalize dependent l.

induction H; intros.
constructor; assumption.
constructor;
apply (IHsublist _ H0).

Qed.

we can construct a proof object showing that

sublist xs’’ xs holds, and thus create the de-

pendent pair for the return type by calling the exist
constructor.

Using the refined type for parser now allows

us to express recursion by passing an argument to

the Function definition that provides Coq with the

necessary information to show that the recursion is

well-founded and thus will terminate. In our case, it

is a measure on the length of the list of tokens passed

as an input that we can now show to be structurally

decreasing:

Definition many {T:Set} (p : parser T)
: parser (list T) :=

fun xs => many_helper T p [] xs.

Function many_helper (T:Set)
(p : parser’ T) (acc : list T)
(xs : list ascii)
{measure List.length xs }
: optionE (list T *
{l’’ : list ascii | sublist l’’ xs})

:= ...

The actual implementation and proof mechanics is

omitted here for brevity, the interested reader can find

it at [http://github.com/andreas23/pdfparser]. The intu-

ition is that since every parser step consumes tokens,

the length of the list will decrease with every step, and

so the recursion is well-founded.
An interesting result follows directly from the def-

inition of the parser type: we can’t write a parser

for the empty string that returns something else than a

parse error:

Lemma parser_nil_none : forall t
(p : parser t), exists err,
p [] = NoneE err.

Proof.
intros. remember (p []) as H.
destruct H.
inversion p0. inversion H.

inversion H0.
exists s. reflexivity.

Qed.

In other words, we can’t have ε in our parser

universe!
Another interesting result is that the many operator

matches one or more successful parses, not zero or

more as common in other implementations. This fol-

lows directly from our definition of a parser to always

consume tokens.
In practice, not having the ability to match on

empty strings or zero repetitions doesn’t seem to be

a problem. In all instances, we could find alternative

constructions that would suffice. For instance, when we

need to match on some X preceded by zero or more

whitespace characters, we would use a construction

that matches on either an X, or one or more whitespace

characters followed by an X.
The most important result we achieved in this

project, however, is showing that we can use dependent

types to properly prove termination of parsers built

using our parser combinators, without resorting to

tricks like step-indexed recursion.

3. Parsing PDF

We attempted to use our parser combinator library

to implement a parser for the PDF file format. We

201201201



succeeded to come up with a parser for a subset of

PDF, enough to understand the object structure of the

PDF file and extract byte streams for objects out of it.

Once our parser combinators were in place, using

them to implement most parts of the PDF parser was

easy and straightforward enough, e.g. parsing numbers,

strings, object references and other primitive parts of

a PDF. However, difficulties arose once we tried to

put everything in place to parse complete PDF files.

The reason again was that there were some recursive

functions that we had a hard time showing termination

for.

More precisely, the PDF format consists, simplify-

ing, of a byte stream consisting of a header, a trailer, a

number of objects between them, and a cross-reference

table. Each object can be referred to by an ID number

inside the PDF, and the cross-reference table maps ID

numbers to byte offsets inside the PDF file. In order

to read a specific object, the parser needs to look up

its byte offset in the cross-reference table.

The format for the objects themselves can vary, one

possible version involves a notation for a “stream”.

This is a sequence of arbitrary bytes, preceded by a

length specification. The termination problem arises

from the fact that this length may not only be specified

using a direct integer value, but also by indirectly

referencing another object that will contain the length

value. In such cases, in order to parse an object, we first

need to parse another object, giving rise to a recursive

function call.

This is precisely the point where we had difficulties

showing termination.. Often, when a proof for some-

thing in Coq fails to go through, it helps to try to

come up with a counterexample for the theorem in

question. So contemplating the problem at hand, we

could indeed come up with constructions of PDF files

where the naive recursive parsing of objects would

lead to infinite recursion. The two constructions we

tried were the case where the length of an object was

an indirect reference to that object itself, and the case

where two objects would mutually reference each other

indirectly for their length value.

6 0 obj
<< /Length 6 0 R >>

stream
foobar

endstream
endobj

7 0 obj
<< /Length 8 0 R >>

stream

foobar
endstream
endobj

8 0 obj
<< /Length 7 0 R >>

stream
foobar

endstream
endobj

In this PDF snippet, object 6 references itself for

the length value of its stream, object 7 and 8 mutually

refer to each other for their respective stream lengths.

A naive recursive parser will attempt to parse both

objects in alternation, and hang in an endless loop.

A related problem exists with the support for up-

dates of the cross-reference table. In order to support

incremental updates of PDF files, cross reference tables

can point to older versions of a cross reference table

inside the same file, so additional objects can be added

to the PDF file without having to rewrite the entire file.

The pointer to the older cross reference table is again

a byte offset into the file, and again we can construct

two cross reference tables pointing to each other:

% at offset 2342:
xref
0 7
0000000000 65535 f
0000000596 00000 n
0000000686 00000 n
% ... (other entries omitted)
trailer
<< /Size 7 /Root 1 0 R

/Prev 4223 >>
startxref
2342
%%EOF
% ...
% at offset 4223:
xref
% ... (table contents omitted)
trailer
<< /Size 7 /Root 1 0 R

/Prev 2342 >>
startxref
4223
%%EOF

Interestingly enough, a PDF file containing all these

constructions would hang every single PDF reader we

tried it on in an endless loop1. Despite this, these

1. Some of them, such as Acrobat Reader, have since been fixed

202202202



constructions are allowed by the PDF standard, see

[3], Chapters 7.3.8.2, 7.3.10 and 7.5.8.

We were able to come up with an implementation

that would correctly determine that parsing the above

constructs would be impossible. In order to do so, we

implemented a mechanism that would remember the

file offsets that were already being used to attempt

parsing an object or xref table. This would return

an error if a parsing attempt was made at at offset

where an unfinished attempt has been made before.

The correctness proof for this construction was non-

trivial, and spans 500 lines.

4. Conclusion

We have shown how to implement parser combi-

nators with a formal proof of termination that does

not rely on step-indexed recursion, using dependent

types. We have also shown how making use of formal

termination proofs helps to find weaknesses in protocol

specifications, which would be hidden when relying on

step-indexed recursion. More precisely, it allowed us

to come up with constructions of PDF files which are

not in violation of the PDF standard, but which are

nonetheless impossible to parse, because they contain

cyclic structures.

Since this was only an academic exercise, we have

not finished the implementation of the full PDF stan-

dard. It became obvious that there are more construc-

tions in this format that give rise to cyclic structures,

such as the offset and reference primitives,

links from older generations of objects to newer gen-

erations, or incorrect backlings from pages to their

parents. Also, we haven’t even looked into overlapping

structures: due to the arbitrary file offsets, objects can

be parts of each other, overlap with cross reference

tables or with each other. All these give rise to similiar

problems as the one described here.

It also became clear that the attempt to write a

formally verified PDF parser is an extremely hard

exercise. Even our very limited form of correctness,

showing termination, quickly becomes tedious and

frustrating. The reason for that lies entirely in the PDF

specification itself, which defines a language that is

not context free, and which contains constructs that

are legal according to specification, but which have no

meaningful representation which can be parsed.

It is highly advisable, for all future definitions of

protocols, file formats and other data exchange lan-

guages, to make sure that the format specification is

complete, unambiguous and doesn’t allow unparseable

constructions. Furthermore, it should be shown that the

language is context-free. Otherwise, any kind of formal

analysis will run into problems, which are mirrored by

reliability problems in real world implementations of

these protocols.

References

[1] Benjamin Pierce et al. Software Foundations. July

2013. URL: http://www.cis.upenn.edu/∼bcpierce/

sf/.

[2] Graham Hutton. “Higher-order functions for pars-

ing”. In: Journal of Functional Programming 2.3

(1992), 323–343. URL: http://eprints.nottingham.

ac.uk/221/1/parsing.pdf.

[3] ISO. Document management—Portable docu-
ment format—Part 1: PDF 1.7. ISO 32000–

1:2008. Geneva, Switzerland: International Or-

ganization for Standardization, 2008. URL: http:

/ / wwwimages . adobe . com / www . adobe . com /

content / dam / Adobe / en / devnet / pdf / pdfs /

PDF32000 2008.pdf.

[4] Xavier Leroy. “Formal verification of a realistic

compiler”. In: Communications of the ACM 52.7

(2009), pp. 107–115. URL: http://gallium.inria.fr/
∼xleroy/publi/compcert-CACM.pdf.

[5] The Coq Development Team. The Coq Proof
Assistant Reference Manual. 2012. URL: http://

coq.inria.fr/refman/.

203203203


