
Mind your language(s)
A discussion about languages and security

Éric Jaeger and Olivier Levillain
Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)

firstname.lastname@ssi.gouv.fr

Abstract—Following several studies conducted by the French
Network and Information Security Agency (ANSSI), this paper
discusses the question of the intrinsic security characteristics of
programming languages. Through illustrations and discussions, it
advocates for a different vision of well-known mechanisms and is
intended to provide some food for thoughts regarding languages
and development tools.

An unreliable programming language generating un-
reliable programs constitutes a far greater risk to
our environment and to our society than unsafe
cars, toxic pesticides, or accidents at nuclear power
stations. Be vigilant to reduce that risk, not to
increase it.

C.A.R Hoare

The French Network and Information Security Agency
(ANSSI1) is an organism whose mission is to raise the security
level of IT infrastructures to the benefit of governmental
entities, companies as well as the general public. This includes
identifying, developing and promoting methods or tools e.g. to
improve correctness and robustness of software. In this area,
the ANSSI has been conducting for a few years different studies
on the adequacy of languages (including formal methods)
for the development of secure or security applications. The
objective of these studies was not to identify or specify the
best possible language, but to understand the pros and cons of
various paradigms, methods, constructions and mechanisms.
Working with language specialists and industrial users, one of
the first lessons learned was that there was no common under-
standing about this notion of intrinsic security of languages,
and furthermore that some of the concerns of security experts
were not understood at first by the other actors. This paper is
intended to shed light on those concerns, as exhaustively as
possible, through numerous illustrations. It attempts to sum-
marise our journey among programming languages, identifying
interesting features with potential impacts on the security of
applications, ranging from language theory to syntactic sugar,
low-level details at runtime, or development tools. Far from
being conclusive, we expect no more than to promote, as far
as security is a concern, alternative visions when dealing with
programming languages; our professional experience is that
this discussion is definitively useful today.

The subject of this article is therefore quite broad, and
to some extent difficult to structure in an appropriate manner
for the different communities. We have chosen to go from
language theoretic aspects to low-level concrete details, then
to discuss additional questions related e.g. to evaluation. After
a short discussion about security, Sec. II considers abstract

1http://www.ssi.gouv.fr

features and paradigms of languages. We will then take a
look under the hood, discussing syntax and more generally
the concrete constructions provided by languages, that can
have a noticeable impact on the quality of (or the confidence
in) programs; this is the subject of Sec. III. Next, Sec. IV
cast some light on those steps leading from source code to a
running program that definitely deserve proper attention, such
as the compilation phase and the execution environment. Once
developed, a product has still to be tested and evaluated to
derive an appropriate level of assurance, as it is discussed in
Sec. V. Finally, Sec. VI ends this paper with a few lessons
learned and perspectives.

I. LANGUAGE SECURITY

A secure software is expected to be able to cope with
wilful aggressions by intelligent agents. In this sense, security
approaches can significantly differ from functional ones (when
the objective is e.g. to ensure that for standard inputs the soft-
ware returns the expected results) or safety and dependability
ones. In any case, bugs have to be tracked and eradicated,
but securing a software may require additional care, trying to
prevent unacceptable behaviors whatever the circumstances,
regardless of their probability of occurrence. Consider for
example a program for compression and decompression: the
functional specification of Compress and Uncompress is that
for any file f we have Uncompress(Compress(f))=f . How-
ever, it says nothing about the behavior of Uncompress when
applied to arbitrary inputs, for example a maliciously crafted
file, which is a common security concern (e.g. CVE-2010-
0001 for gzip). We are also interested in security software,
that is products offering security mechanisms. Such software
has to be secure but has also to meet additional requirements to
protect data or services. A good example discussed thereafter is
a library providing cryptographic services, which is expected to
protect the cryptographic keys it uses, preventing unauthorised
modifications or information leaks2. Finally, we have to take
care about the question of the evaluation. Indeed, a secure
software may not be of any use in practice if there is no
way to know that it is secure. It is therefore important to
have processes to obtain appropriate assurance levels (see for
example the Common Criteria standard [CC]).

There exist numerous works concerning language safety,
and to some extent one may consider that languages such as
ERLANG3 or SCADE4 have been designed specifically to cope

2Techniques used to protect cryptographic implementation against side-
channel attacks [CJRR99], [GP99] are out of the scope of this paper.

3http://www.erlang.org
4http://www.esterel-technologies.com/products/scade-suite

2014 IEEE Security and Privacy Workshops

© 2014, Eric Jaeger. Under license to IEEE.

DOI 10.1109/SPW.2014.29

140

2014 IEEE Security and Privacy Workshops

© 2014, Eric Jaeger. Under license to IEEE.

DOI 10.1109/SPW.2014.29

140

2014 IEEE Security and Privacy Workshops

© 2014, Eric Jaeger. Under license to IEEE.

DOI 10.1109/SPW.2014.29

140

with resilience, safety or dependability. Many general purpose
formal methods can also be seen as tools to adequately address
functional or safety needs. However, to our knowledge, the
question of the security of languages is not so popular, and
literature is still rather scarce. To be fair, there are books
providing recommendations to develop secure applications in
a given language, as well as proposals to natively include
security features such as e.g. information flow control in
languages [HA05]. But from our point of view, the security
concerns are much broader than that, and should be addressed
not only through coding recommendations or other software
engineering methods, but also by due consideration during
design phases of languages and associated tools. This has
led ANSSI to conduct several works dealing with security
and development, looking at several programming languages
or development methods with a critical (and admittedly un-
fair) eye. This includes a first study to better understand
the contributions of the JAVA language [ANS10], a second
study on functional languages in general and OCAML in
particular [ANS13], as well as a review of the benefits and
limits of formal methods [JH09], [Jae10].

In the rest of this paper, we summarise many of our
concerns through illustrations, to give some food for thoughts
for the academic communities interested by languages. The
sources of our concerns are numerous – and not always
subtle: they range from syntax traps or false friends for
inattentive developers to obfuscation mechanisms allowing a
malicious developer for hiding a backdoor in a product while
escaping detection by an evaluator, but also include theoretical
properties not enforced in executable code or inappropriate
specifications.

Code excerpts presented in the following sections use
different programming languages. Our intent is not to criticise
a specific language, but to illustrate concrete instances of our
concerns (more often than not, the concepts are applicable to
other languages). Furthermore, we may provide negative re-
views for some mechanisms or concepts; the reader is expected
to remember that we only deal in this paper with security
concerns for critical developments, and that our messages
should not be generalised too quickly to other domains.

Acknowledgement: We would like to mention that some
of our illustrations have been derived from examples on
different websites and blogs such as [Koi], [Atw], [FO] and
(last but not least) [DW].

II. ABSTRACT FEATURES AND PARADIGMS

The tools we are trying to use and the language
or notations we are using to express or record our
thoughts, are the major factors determining what we
can think or express at all!

Edsger W. Dijkstra

A. Scoping and Encapsulation

We start our discussion with a family of features existing
in nearly any mainstream languages, namely the scoping of
identifiers and the encapsulation. They are rather simple mech-
anisms, and such information is helpful e.g. for the compiler
to define an appropriate mapping or to apply possible opti-
misations. Furthermore, they are attractive for the developer

dealing with security objectives, e.g. to protect confidentiality
or integrity of data. We believe that developers rely on many
assumptions about frontiers between various parts of software
– they expect proper separation between e.g. local variables
of an application and a library it uses, and vice versa. Any
mechanism blurring such frontiers is likely to translate into
security concerns.

Variable scoping: In general, languages come with
variables of different sorts, in terms of scope (local vs global)
and life cycle (constant, variable or volatile). This is closely
related to various theoretical concepts such as bound variables
and α-renaming, and is so common that it has become part
of developers’ intuition. But for a few languages, the design
choices appear rather unexpected, especially when syntax does
not provide any clue. Consider the following snippet in PHP:

$var = "Hello World ";
$tab = array("Foo ", "Bar ", "Blah ");
{ foreach ($tab as $var) { printf($var); } }
printf($var);

Code snippet 1.

The foreach loop enumerates the values of the array $tab

and assigns them to the variable $var. This code prints succes-
sively Foo, Bar, Blah. . . and Blah at its last line: the variable $var

in the foreach loop is not locally bound and its previous value
Hello World is overwritten. PYTHON has a similar behavior
with the comprehension list construct, e.g. in [s+1 for s in

[1,2,3]], that yields [2,3,4], the variable s should be locally
bound, but survives the definition. This is unexpected, and
in fact inconsistent with other similar constructs in PYTHON

such as the map construct5. This is, in our view, sufficiently
unexpected and intriguing to be dangerous: developers rely
on compositionality, and such poor managements of scopes
mean that the semantics of closed – using only locally defined
variables – pieces of code now depend upon their context.

Encapsulation: The encapsulation, e.g. for object-
oriented languages, is a form of extension of scoping, but with
a different flavor. In JAVA for example, one can mark a field as
private to prevent direct access – except from other instances
of the same class. Problems arise when a developer confuses
this software engineering feature with a security mechanism.
Consider this example in JAVA:

import java.lang.reflect.*;

class Secret { private int x = 42; }

public class Introspect {
public static void main (String[] args) {

try { Secret o = new Secret();
Class c = o.getClass();
Field f = c.getDeclaredField("x");
f.setAccessible(true);
System.out.println("x="+f.getInt(o));

}
catch (Exception e) { System.out.println(e); }

}
}

Code snippet 2.

The printed result is x=42: introspection is used to dynami-
cally modify the class definition and remove the private mark.
It is possible to forbid the use of introspection in JAVA with
the so-called security monitor, yet this is a rather complex
task – which is furthermore likely to have side effects on

5The behavior of comprehension lists has been fixed in PYTHON 3 but not
in PYTHON 2, for the sake of backward (bugward?) compatibility.

141141141

standard library services, as for example serialization in JAVA

uses introspection.

OCAML provides encapsulation mechanisms through ob-
jects, but also a more robust version based on modules, whose
public interface can be partial with respect to their actual
implementation. For example, the following C module exports
its id field but not key, as specified by its interface Crypto:

module type Crypto = sig val id:int end

module C : Crypto =
struct

let id = Random.self_init(); Random.int 8192
let key = Random.self_init(); Random.int 8192

end
Code snippet 3.

That is, C.id is a valid expression whereas C.key is not,
being rejected at compilation time. This is a pretty interesting
feature to protect data, relying on well-studied type checking
mechanisms: from the academic perspective, such a module is
a closed box that cannot be open. Yet there are in OCAML

literature descriptions that do not fit together. In [WL99], for
example, a polymorphic function is described as a function
that does not analyse the whole structure of its parameters,
whereas the reference manual indicates that functions such as <

are polymorphic and compare the structure of their parameters.
Enters version 3.12 of OCAML, introducing first-class modules
(i.e. modules are values that are comparable). This led us to
write this little experiment:

let rec oracle o1 o2 =
let o = (o1 + o2)/2

in let module O = struct let id=C.id let key=o end
in if (module O:Crypto)>(module C:Crypto)

then oracle o1 o
else if (module O:Crypto)<(module C:Crypto)
then oracle o o2
else o

Code snippet 4.

The function oracle is parameterised by o1 and o2, the lower
and upper bounds. It creates a module O with key set to o,
the mean value of the bounds, and compare it with C. If O>C,
the function is invoked again replacing the upper bound by o

(or the lower bound if O<C). In practice, the oracle function
finds the hidden value of C.key6. The attack is logarithmic in
time but the main point is that we have been able to cross
module frontier. Adopting again the academic perspective, the
box has not been opened, but its contents is revealed by
using a weighing scale. Some consider that this argue against
polymorphic comparison operators in OCAML; for us it shows
that trusted theoretical notions are not automatically and easily
translated into robust security properties.

Our comments regarding encapsulation mechanisms are not
intended to pinpoint errors in the languages: such mechanisms
are convenient design tools of software engineering. On the
other hand, it should be clear for developers that they are not,
in general, robust security mechanisms.

B. Side effects

A fundamental result of typed λ-calculus (a pure functional
language) states that evaluation strategy has no influence on
the result of computations. Conversely, in presence of side

6The complete explanation of why it works also relies on the existence of
a not-so-appropriate compiler optimisation.

effects, the order of computations may become observable.
Provided this notion of evaluation strategy does not appear to
be part of developer’s common knowledge, we may expect
some confusion when dealing with side effects. In [KR88]
for example this is explicitly addressed by a clear and simple
explanation of the difference of behavior between the #define

abs(X) (X)>=0?(X):(-X) macro and the int abs(int x) { return

x>=0?x:-x; } function when one computes abs(x++). Yet we
would like to discuss much more intriguing situations:

{ int c=0; printf("%d %d\n",c++,c++); }
{ int c=0; printf("%d %d\n",++c,++c); }
{ int c=0; printf("%d %d\n",(c=1),(c=2)); }

Code snippet 5.

Well-informed C developers guess that the first line prints
1 0 as a consequence of right-to-left evaluation of parameters
for the call-by-value strategy, but are generally surprised that
the second line prints 2 2. At this stage, it would be cautious
to admit that the pre- and post- increment operators can be too
subtle to use. And, as in practice we will not miss them badly,
why do they exist at all in the language? We are not over yet
with side-effects, as affectations are by definition the primitive
form of side-effect, and as a bonus are also a value in many
languages such as C – a cause of troubles for generations
of developers that have accidentally inserted an assignment
instead of a boolean test in their if statements. The third line
of the example therebefore prints 1 1 (this is also the final value
of the variable c), something not so easily explained except by
discoursing on calling conventions of C. This type of code is
confusing and explicitly discouraged by C standards: why then
is it compiled without even a warning?

By extension, anything revealing the evaluation strategy
can be considered as a side effect. Let us play again with
macros and functions for simple tasks, what would be the
difference between the macro #define fst (x,y) x and the
function int fst (int x,int y) { return x; }? One can reveal
which one is used with fst(0,1/0), as the call-by-value strategy
for functions will throw an exception. Pretty straightforward,
so what do the following pieces of code?

int zero(int x) { return 0; }
int main(void) { int x=0; x=zero(1/x); return 0; }

Code snippet 6.
int zero(int x) { return 0; }
int main(void) { int x=0; return zero(1/x); }

Code snippet 7.

There is unfortunately no simple answer to this simple
question: using the GCC compiler, there is an exception for
both with option -O0, with option -O1 the first code returns 0

and with option -O2 the second also returns 0. The fact that
standard optimisations7 can modify the observable behavior
of a program is worrying, and reveals a lack of clear and non
ambiguous semantics for the C language.

As a last comment about side effects, let us go back to
more basic observations but with unexpected applications to
OCAML. In this language any standard variable is in fact a
constant, in the sense that it can only be declared, allocated and
initialised at once, and that it cannot be assigned later. Yet all
allocations are managed by the garbage collector and variables
live on the writable heap – this prevent the use of low-level
security mechanisms such as storing constants in read-only

7Admittedly, the -O3 flag is known to have curious effects and it’s use is
not recommended, but as far as we knew this was not the case with -O2.

142142142

pages for example. OCAML also provides mutable strings (it
is an impure functional language). Put together, this actually
means that there is no way to have constant strings, which
allows for dirty tricks such as this one:

let alert = function true -> "T" | false -> "F";;
(alert false).[0]<-’T’;;
alert false;;

Code snippet 8.

The first line of this code declares a function alert with a
boolean parameter and returns a string, either "T" for true or
"F" for false. The second line computes alert false to get the
reference to the "F" string and overwrites its first char with ’T’.
As a consequence, the third line returns the string "T" instead
of "F" – as any further invocation of alert false. Again, this
is logical, yet surprising: as far as the developer is concerned,
the source code of the function alert appears to have been
modified by a side effect. This also applies to standard library
functions of OCAML (at least in version 3.12 of the language8)
and one can modify for example string_of_bool – by the way
also impacting the behavior of Printf.printf. Similarly, it is
a common practice in OCAML to parameter exceptions with
strings, that can later be pattern-matched to take decisions;
modifying such strings can then interfere with execution flow.
As a final example, let us mention that the strings returned
by Char.escaped, which is a security mechanism, can also be
meddled with.

C. Types

Don’t you see that the whole aim of Newspeak
is to narrow the range of thought? In the end we
shall make thought-crime literally impossible, be-
cause there will be no words in which to express it.

1984, George Orwell

In Mathematics, type theory was a proposal of Bertrand
Russel to amend Gottlob Frege’s naive set theory in order to
avoid Russel’s paradox. In computer science, type checking
is a well-discussed subject, and provides a good level of
assurance with respect to the absence of whole categories of
bugs – especially when the associated theory is proven. It
can statically reject syntactically valid but meaningless expres-
sions, but can also enforce encapsulation, manage genericity
or polymorphism, and so on. In the family of ML languages
[Mil84], [MT91], such as OCAML, it also leads to type
inference and static verification of the completeness and rele-
vance of pattern matching constructs, actually providing great
assistance to developers. Type-checking is therefore relatively
powerful, efficient and, last but not least, it does not contradict
developers’ intuition (yet advanced type systems may induce
subtle questions, e.g. when dealing with subtypes and higher-
order constructs [Pie02]). Thus we consider that type-checking
is a must for secure developments, preferably static and strong
to ensure early detection of ill-formed constructs.

Casts and overloading: It is often considered that strict
application of type-checking concepts leads to cumbersome
coding standards, not-so-friendly to developers. OCAML for
example distinguishes between integer addition + and floating-
point addition +. and does not automatically coerce values.

8Actions have been taken since then to avoid such manipulations e.g. by
systematically returning copies of strings instead of the original ones.

The expression 1. + 2 is therefore rejected, one correct version
being 1. +. (float_of_int 2).

It is therefore standard for languages and compilers to
ease developer’s work by providing automated mechanisms
allowing for overloading (using the same identifier for dif-
ferent operations) and automated casts or coercions. Yet we
have various concerns about this approach. A first and trivial
comment is that, whereas every student uses this type of trick,
nearly none of them can explain what’s going on. Casts and
overloading are not a comfort anymore but a disguise.

All animals are equal, but some animals are more
equal than others.

Animal Farm, George Orwell

But we are also worried by the consistency of design
choices. Consider the example of ERLANG, in which ex-
pressions such as 1+1, 1.0+1.0 and 1+1.0 are valid, implicitly
inviting developers not to care about the difference between
integers and floats. Let us now consider the typical example
of the factorial function, presented in all beginner lessons:

-module(factorial).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N*fact(N-1).

Code snippet 9.

Without surprise, factorial:fact(4) returns 24, but on the
other hand factorial:fact(4.0) causes a stack overflow. The
same type of remarks apply to JAVASCRIPT, in which the
condition 0==’0’ (comparing an integer with a string) is true,
but a switch (0) does not match with case ’0’.

Beyond such inconsistencies, one can also wonder whether
casts and overloads are worth missing fundamental and in-
tuitive properties. For example, equality is expected to be
transitive, but this is not the case in JAVASCRIPT as ’0’==0

and 0==’0.0’ are true but ’0’==’0.0’ is false. Similarly + can
represents integer addition, floating point addition or string
concatenation ; consider the following example:

a=1; b=2; c=’Foo’;
print(a+b+c); print(c+a+b); print(c+(a+b));

Code snippet 10.

This code prints 3Foo, Foo12 and Foo3. Whereas all the oper-
ations represented by + are associative, the property disappear
for the composite (overloaded) operator.

Let us continue our discussion on casts and overloading
with examples in the C language. Here again, this is notorious
that unexperimented developers can be tricked, the canonical
example being int x=3; int y=4; float z=x/y; which results
in z being assigned 0.0. This one is maybe a little to easy
to explain, so consider the following one:

unsigned char x=128;
unsigned char y=2;
unsigned char z=(x*y)/y;

Code snippet 11.

Some may be surprised to find out that z is assigned 128

and furthermore disappointed that compiler’s optimisation has
nothing to do with this result: even in this code where all
values have the same type, there are implicit casts. The cast
mechanism in itself can be quite subtle too, as the following
code prints 1>=-1 and 1<-1:

{ unsigned char a = 1; signed char b = -1;
if (a<b) printf("%d<%d\n",a,b);

143143143

else printf("%d>=%d\n",a,b); }

{ unsigned int a = 1; signed int b = -1;
if (a<b) printf("%d<%d\n",a,b);
else printf("%d>=%d\n",a,b); }

Code snippet 12.

At this stage, we have to consider coercions and over-
loading as false friends, on some occasions too devious to
be managed properly. Are we too severe? Well, in practice,
this leads to situations such as the following one:

#include <stdio.h>

void safewrite (int tab[],int size,
signed char ind,int val) {

if (ind<size) tab[ind]=val;
else printf("Out of bounds\n");

}

int main(void) {
size_t size=120;
int tab[size];
safewrite(tab,size,127,0);
safewrite(tab,size,128,1);
return 0;

}

Code snippet 13.

safewrite(tab,size,127,0) correctly produces the expected
Out of bounds message, but safewrite(tab,size,128,0) suc-
ceeds – why and where the write occurs is left to reader’s
wisdom, as how would the program behave with size=150.
Of course some compiler options (such as -Wconversion for
GCC) help to pinpoint such problems, but in practice there is
a long history of bugs which are, in essence, similar to this
one, leading to critical security vulnerabilities. For example, a
really subtle bug in OpenSSL, CVE-2010-0740, was fixed by
an even more subtle short patch:

- /* Send back error using their
- * version number :-) */
- s->version=version;
+ if ((s->version & 0xFF00) == (version & 0xFF00))
+ /* Send back error using their minor version number */
+ s->version = (unsigned short)version;

Code snippet 14.

In the light of the previous examples, it might be hard to
explain the exact consequences of adding an explicit integer
cast, which can vary across architectures and compilers.

The JAVA language also allows developers for shooting
themselves in the foot with overloadings as in this example,
which prints Foo, Bar and Foo:

class Confuser {
static void A(short i) { System.out.println("Foo"); }
static void A(int i) { System.out.println("Bar"); }

public static void main (String[] args) {
short i=0; A(i); A(i+i); A(i+=i);

}
}

Code snippet 15.

PHP induces a whole new category of difficulties as far
as types are concerned. One can play for example with string
arithmetics, and increment with ++ a variable storing the string
"2d8". The variable value is successively the "2d9" string, the
"2e0" string and finally the 3 float, as "2e0" is interpreted
as a scientific notation. The confusion between strings and
numerical values is consistently reflected by the comparison
operator ==, which can induce casts even when comparing
values of the same type. For example, the "0xf9"=="249e0"

condition yields true as it does not compare the two strings

but convert them respectively into int(249) and float(249). Let
us illustrate the consequences of these mechanisms with the
following piece of code:

$h1=md5("QNKCDZO");
$h2=md5("240610708");
$h3=md5("A169818202");
$h4=md5("aaaaaaaaaaaumdozb");
$h5=sha1("badthingsrealmlavznik");

if ($h1==$h2) print("Collision\n");
if ($h2==$h3) print("Collision\n");
if ($h3==$h4) print("Collision\n");
if ($h4==$h5) print("Collision\n");

Code snippet 16.

When executed, it prints Collision four times. It is difficult
to believe that we have indeed four distinct short strings
with the same MD5 hash, and impossible to have a collision
between an MD5 hash and a SHA1 hash. The trick is that each
of the computed hash is itself a string matching the pattern
[0]+e[0−9]+. When compared with == they are therefore all
converted into the same value, that is float(0).

To conclude this discussion, remember that we have pre-
sented type checking as a way to detect ill-formed expressions.
To some extent, casts and overloading weaken this detection,
the compiler being authorised to manipulate the code until it
has a meaning. But one should avoid a situation in which
any syntactically valid construct would become acceptable!
JAVASCRIPT seems to be well advanced on this road, as all
the lines in the following example are valid and have a distinct
meaning, including the first and fourth one9:

{} + {} // NaN
[] + {} // "[object Object]"
{} + [] // 0
({} + {}) // "[object Object][object Object]"

Code snippet 17.

Type abstraction: Types provide a level of abstraction
of programs convenient for the developers, but can lead to
oversimplistic analyses in some cases. For example, one can
consider that a well-typed boolean expression will return either
true or false. We would argue however that other behaviors are
possible and should be considered as well, for example looping
computations or errors. Indeed, short-sighted view can easily
become a cause of concerns, as illustrated here:

#!/bin/bash
PIN_CODE=1234
echo -n "4-digits PIN code for authentication: "
read -s INPUT_CODE; echo

if ["$PIN_CODE" -ne "$INPUT_CODE"]; then
echo "Invalid PIN code"; exit 1

else
echo "Authentication OK"; exit 0

fi
Code snippet 18.

This script checks whether a PIN code is valid or not for
authentication. One can conclude that if the provided code
is 1234, authentication will succeed, whereas any other value
is rejected. However, in practice the test relies on a shell
command which is expecting numerical values. Should a non
numerical value such as blah be provided, this test would return
an error code interpreted as being not true by the if statement,
resulting in undue authentication.

In March 2014, an interesting vulnerability has been dis-
covered in the GNUTLS library; let us just quote the analysis

9See http://jscert.org.

144144144

provided on Linux Weekly News10:

[This bug] has allowed crafted certificates to evade
validation check for all versions of GNUTLS ever
released since that project got started in late 2000.[...]
The check_if_ca function is supposed to return true
(any non-zero value in C) or false (zero) depending
on whether the issuer of the certificate is a certificate
authority (CA). A true return should mean that the
certificate passed muster and can be used further, but
the bug meant that error returns were misinterpreted
as certificate validations.

Types at runtime: As a final remark about types, one
should note that in static type-checking systems, types are
pure logical information that have no concrete existence in
implementations. This topic and its practical consequences are
discussed in Sec. IV.

D. Evaluators

Some languages offer mechanisms to dynamically modify
or create code, e.g. relying on evaluators. This is the case
of the eval command in PHP, transforming strings into code
which is executed. This allows for meta-programming and
other dynamic features. As a related subject, we will discuss
in Sec. IV the notion of attack by injection. For now, let us
note that as far as security is concerned, the use of any form of
evaluator makes a program impossible to analyse: in our view,
language-embedded evaluators forbid security evaluation.

III. SYNTAX AND SYNTACTIC SUGAR

The elements presented in the previous sections deal with
relatively high-level concepts. However, on occasions, the
syntax of the language can be confusing or even misleading
either for developers or evaluators. We provide a short review
of concrete details that can become important.

A. Consistency

Come, let us go down and confuse their language so
they will not understand each other.

Genesis 11:7

Identical keywords in different languages can have different
semantics – something that we need to live with, but deserve
adequate consideration e.g. for education of developers or
evaluators. But it may be also that the same keyword or concept
is used with several semantics in a language, depending upon
the context. One can consider for example in JAVA the various
possible meanings of the static tag, or the use of the interface
concept as a flag to enable some mechanisms provided by
the standard library (e.g. serializable). We find such design
choices confusing and therefore potentially dangerous.

B. No comments

As noted in Sec. II, assignment x=1 is also an int value in
C, whereas x==1 is a boolean condition (that is an int value).
Confusing the two constructs is a common mistake, due to
syntax similarity and the absence of warning from the compiler

10http://lwn.net/Articles/589205/

using standard options. This can also be a trick used by a
malicious developer, as in this now classical example11 of what
appears to be an attempt to insert a Trojan horse in the LINUX

kernel:
+ if ((options==(__WCLONE|__WALL)) && (current->uid=0))
+ retval = -EINVAL;

Code snippet 19.

This small insert in the code of a system call mimics an
error check. Yet in practice, should the two options __WCLONE

and __WALL be set together (an irrelevant combination), and only
in this case due to the lazy evaluation of &&, then the process
user id would become 0, that is root. This trap is discrete both
with respect to syntax and behavior.

Don’t get suckered in by comments, they can be
terribly misleading.

Dave Storer

Some apparently irrelevant details of syntax may also
be misleading to reviewers, e.g. the very basic concept of
comments. For example in OCAML comments are surrounded
by (* and *), can be nested, but also have an intriguing feature.
Consider the following piece of code:

(* x" enable security checks *)
let x’’=true;;

(* REMOVED ON Friday 13th 2013 ===============
(* x"=false to disable checks during tests *)
let x’’=false;;
(* Set x"=true once tests are completed *)

CHANGED x" TO ENABLE SECURITY CHECKS =========*)

Code snippet 20.

At first, it seems that the line let x’’=true is executed, the
rest of the code being commented out. But it is possible, in
OCAML, to open a string in a comment – and this is exactly
what we have done in our example. Therefore let x’’=true is
in fact commented out, whereas let x’’=false is not. This is
especially misleading when syntax coloring tools do not apply
the appropriate rules (as this is indeed the case for some).

Similar tricks are possible in C, such as in this example:
// /!\ Do not uncomment /!\
/***********************************
const char status[]="Unsafe";
// /!\ Only for tests /!\

***********************************/

// /!\ Important, do not remove /!\
const char status[]="Safe";

Code snippet 21.

Of course, it assigns Unsafe to the string status12. This can
be used by a malicious developer to trick an evaluator, but it
may also mean that, either because of a genuine ambiguity
or because of misunderstandings, different tools can have
different interpretations for the same source file, a perspective
we are worried about.

C. Encoding

Let us conclude this section with a silly discussion about
encoding. Some compilers allow for the use of UTF in source
codes. We do not dispute the advantage of having many more
symbols at hand, but we are definitely concerned by the

11lwn.net/Articles/57135.
12Provided there are no blank spaces after the trailing backslashes, which

in itself is an interesting observation.

145145145

numerous other possibilities offered by UTF-compliant tools.
Consider this valid JAVA code:

public class Preprocess {
public static void ma\u0069n (String[] args) {

if (false==true)
{ //\u000a\u007d\u007b

System.out.println("Bad things happen!");
}

}
}

Code snippet 22.

Despite appearances, from the JAVA compiler’s perspective
the method name is main, the comment mark is immediately
followed by a line feed, a closing bracket and an opening
one. The println command, being out of the if block, is
therefore executed. That is, using basic escape sequences, the
structure of the code is modified. We have not yet investigated
other interesting features such as right-to-left mark which
allows for reverse printings (as well as overwrites), but we are
definitively worried about them: there is a risk that different
tools (such as the editor and the compiler in the previous
example) provide different interpretations of the same source,
leading to confusion or allowing for obfuscation.

IV. FROM SOURCE CODE TO EXECUTION

Even when the programming language used to develop
critical parts of a system offers all the desirable properties,
what really matters from the evaluation perspective is the
behavior of the program at runtime. Let us explore the long
road from source code to execution, and some consequences
for those desirable properties.

A. Which program?

Evaluators and interpreters: For critical systems, we
have mentioned in Sec. II our concerns regarding the presence
of evaluators in a language, as they make impossible analyses
of programs. But we also need to mention that, by defini-
tion, such constructs allow for code injection. This applies
to languages such as PHP, LISP that have built-in internal
evaluators, but also to any other language which provides
access to external evaluators.

Web applications are the canonical illustrations, transmit-
ting strings interpreted as SQL queries by database engines.
In PHP for example a common mistake is to build the query
by concatenating constant strings with user-provided data, e.g.
$query="SELECT * FROM MyTable WHERE id =’".$login."’", with-
out realising what would happen should the variable $login

be assigned value "’ OR 1=1; DROP MyTable; -- ". But similar
concerns exist e.g. when playing with exec-like features, using
a shell as the interpreter, like system or popen in C.

There is no definitive conclusion about this type of vulnera-
bilities. Use of evaluators should be discouraged and submitted
to thorough controls. It also justifies appropriate education for
the developers, focusing not on recipes but on the principles,
which are very generic: they apply not only to web applications
in PHP but to any language with mechanisms blurring the
frontier between data, metadata and code13.

13By the way, what would you expect as the result of the shell command
rm * in a directory containing a file named -fr?

Interpreted language: Various forms of code injections
or unexpected executions are discussed in this paper. To
palliate such vulnerabilities at system level, there are numerous
known mechanisms and established practices. For example,
one can control executable files, or rely on enforcing the
W ∧ X property to forbid a memory location to be both
writable and executable. But what become such mechanisms
with an interpreted language? As the code is only read and
not executed (from the processor perspective), they offer no
protection; the use of interpreted language therefore require
an update of common security practices and thumb rules.
Worse, with Just-In-Time (JIT) compilers, modern interpreted
language need the memory to be writable and executable at
runtime, preventing the use of W ∧X mechanisms, re-opening
an avenue for attacks at the native level.

B. Undefined behavior

Discussing side effects, we have illustrated unspecified
or inadvisable constructs that can be compiled and executed
without warnings. There are other meaningless but supported
constructs in C, including very intriguing (and worrying) ones,
such as for example pointer arithmetic applied to function
pointers14. We have also indicated that in the absence of strong
typing, some languages try and define the meaning of many
possible expressions. A related problem in some languages
is when the compiler leverages the presence of undefined
behaviors to optimise the result.

For example, in C, since dereferencing a null pointer makes
no sense, the compiler can fairly assume that a dereferenced
pointer is not null. Thus, in the following code, line 2 results in
the assumption that tun is not null. The compiler can therefore
remove the useless lines 3 and 4 for optimisation:

struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
/* use *sk for write operations */

Code snippet 23.

This particular code was part of the LINUX kernel in
2009 and led to a vulnerability (CVE-2009-1897). A recent
study [WZKSL13] built on similar examples to analyse the
interaction between undefined behaviors and compiler optimi-
sations. However, some of these dangerous optimisations do
not show in the source code, but are created as a result of
previous intermediate steps, which makes it very hard to fix
the general issue without drastically reducing the performance
of the generated code.

C. Encapsulation and compilation

Many languages offer a form of encapsulation, but in
general this abstract characteristic does not survive compila-
tion, producing a single, monolithic memory mapping. This
is understandable, as the disappearance of encapsulation has
no observable effect on the execution of the program, whereas
performance are as good as possible. Yet this also explain why
in dysfunctional situations (such as error injection following
a buffer overflow) there is usually no protection nor any
detection mechanism.

14Yes, it works. . . Well, it compiles, executes, and does something.

146146146

JAVA, being executed as a bytecode on a JVM, emulate such
protections – this is part of the job of the bytecode verifier. Of
course, as mentioned in Sec. II, introspection can be a cause
of concern, but let us put aside this question for a moment to
consider a more intriguing question: JAVA allows for defining
inner classes. Instances of the inner class have direct access
to private fields of the containing class, and vice versa, as
illustrated by this code:

public class Innerclass {
private static int a=42;

static public class Innerinner {
private static int b=54;
public static void print() {

System.out.println(Innerclass.a);
}

}

public static void main (String[] args) {
System.out.println(Innerinner.b);
Innerinner.print();

}
}

Code snippet 24.

Interestingly, inner classes can be defined in JAVA but
cannot be represented in bytecode – this is quite remarkable,
as it means in theory that the JAVA language is more expressive
than the JAVA bytecode and that the former cannot be compiled
in the latter. Yet the previous example can be compiled, so how
is it done? The inner class is in fact extracted and compiled
independently. In order to maintain accessibility of both the
outer and the inner classes to the a and b fields, the private
tags are removed. That is, those fields are now accessible from
instances of other classes as well. In our view, such silent
modifications of the code by the compiler should be banned.

D. Memory protections in native binaries

Usually, when the compilation phase produces a native
executable, all the compilation units used are grouped in the
same memory space, where only coarse grain protection can be
enforced: read-only regions and non-executable stacks or data.
As a matter of fact, the link between source code indications
and binary memory mapping is sometimes not preserved, but
can even be broken. Consider the following C code:

int main (void) {
char* s = "Hello";
printf ("%s\n",s);
s[0] = ’h’;
printf ("%s\n",s);
return 0;

}

Code snippet 25.

When compiling it on recent systems, the string literal "

Hello" is put in the read-only data section at compile-time,
leading to a segmentation fault when executing line 4. The
problem comes from the compiler that allows for a read-only
string to be put into a read-write variable. This inconsistency
vanishes when using G++ instead of GCC, or by adding in
the options the -Wwrite-strings flag, which is off by default
due to compatibility issues.

We believe that in some cases, it would be interesting to go
further than the current implementations of compilers. Critical
parts of a system could benefit from finer-grain memory pro-
tections. For example, in object-oriented languages, different
classes (or even different instances of the same class) could

be compiled as different processes or at least as different
threads, relying on operating system mechanisms to provide
stronger isolation. This would mean that the compilation steps
also consider non-functional properties (like encapsulation)
as invariants to be preserved along the way, whereas today
they only care to maintain observable behaviors in standard
conditions.

E. About serialization

In a static type-checking system, types are pure logical
information which have no concrete existence in the actual
implementation. It is a pity because very often types, being
so intuitive, are implicitly used in developers’ reasonings –
that is, some ill-typed situations may never be considered,
whereas they can indeed occur. This is for example what make
the wrap-and-decipher vulnerability of PKCS#11 [Clu03] so
elusive: the attack relies on exporting a cryptographic key
which is later re-imported as a message. Keys and messages
can indeed be confused in the physical world at execution time,
whereas theoretical models can implicitly forbid such a sce-
nario (see [JH09], [Jae10]). To some extent, this also explains
why developers may omit to check the consistency of data in
complex formats, e.g. trusting the provided uncompressed size
field in the header of a compressed file, resulting in buffer
overflow vulnerabilities when using C-like languages.

Many modern languages provide an easy way for the
developer to store and load binary objects as strings or files,
the serialization. This mechanism allows for building complex
structures (huge trees or hash tables) only once, saving them on
disk and then relying on the deserialization to unfold the object
without having to code a parser. In this context, our remarks
about forgotten types apply. In practice, types are related to
the interpretation method of such a string, and deserializing
data is therefore often an act of faith, relying on the hope that
the loaded string will be correctly interpreted as a value of
the expected type. In general, modifying a serialized object on
disk will lead to a memory error on loading, but the worst
case scenario is to forge a serialized object directly pointing
at memory cells it should not have access to. As a matter
of fact, the LaFoSec study [ANS13] showed that the OCaml
language was affected: during the deserialization, references
between values are unfolded, yet no check insures the extracted
references correctly point to deserialized values. It is therefore
possible to forge a serialized blob containing pointers towards
memory cells outside the blob – this is by the way the true
meaning of the warning in the OCAML reference manual about
Marshal.from_channel: Anything can happen at run-time if the
object in the file does not belong to the given type. The same
is true with the PYTHON pickle module, whose documentation
explicitly recognises the presence of the vulnerability15.

On occasions, type information would be interesting to
preserve at runtime as metadata – provided their integrity is
ensured. But even when types are enforced at runtime, as it
is the case in JAVA bytecode (without integrity protection, but
this is not the subject of discussion here), serialization can
still lead to serious security problems. Consider the following
code:

15http://docs.python.org/3/library/pickle.html states that [the] pickle module
is not intended to be secure against erroneous or maliciously constructed data.
Never unpickle data received from an untrusted or unauthenticated source.

147147147

import java.io.*;

class Friend { } // Unlikely to be dangerous!

class Deserial {
public static void main (String[] args)

throws FileNotFoundException,
IOException,
ClassNotFoundException {

FileInputStream fis =
new FileInputStream("friend");

ObjectInputStream ois =
new ObjectInputStream(fis);

Friend f=(Friend)ois.readObject();
System.out.println("Hello world");

}
}

Code snippet 26.

This code is intended to deserialize an instance of the
class Friend, but this is not what happen in practice. Indeed,
JAVA serialized files contains a reference to their class, and
deserializing such a file automatically loads the corresponding
class and executes its initialisation code16, before creating the
instance in memory. It is later that this instance is casted –
possibly causing an exception, should types not be compatible.
But this is far too late if the initialisation code is malicious!
Thus JAVA serialized objects should not be seen as mere data.
In 2008, a vulnerability was reported on the way the Calendar
class deserialized foreign objects in a privileged context (CVE-
2008-5353). In this particular example it was shown that
deserializing an object could lead to load a new class and to
execute initialisation code with the privileges of the standard
library classes.

F. Low-level details matter

To understand how some vulnerabilities operate in order
to prevent or patch them, it is often necessary to understand
how memory management works in a computer. Consider the
following illustration of a format string attack:

#include <stdio.h>

char *f="%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.\
%08x.%08x.%08x.%08x.%08x.%08x.%n";

void strfmtattack() { printf(f); printf("\n"); }

int main(void) {
int s=0x40414243;
int *p=&s;
strfmtattack();
if (s!=0x40414243)

printf("Bad things happen! s=%08x\n",s);
return 0;

}

Code snippet 27.

strfmtattack uses printf to read and overwrite variable s

which is outside its scope. But describing how stack buffer
overflows or format string attacks work ([Ale96], [LC02])
requires knowledge on how variables, function arguments
and return pointer are actually mapped in the memory. We
certainly appreciate high-level programming languages and
the features they provide for developers, such as automated
memory management by a garbage collector preventing many
critical bugs. On the other hand, we are not very comfortable
with the related idea of teaching only high-level programming
languages. Our fear is that if developers no longer need to call
malloc and free because the language they use has a garbage

16That is code not included in a method and marked as static.

collector, there will be no point of teaching them what the stack
and the heap are. This is plain wrong, as high-level languages
in fine rely on native binaries and libraries. In particular, it
ends up with this type of code17:

public class Destruction {
public static void delete (Object object) {

object = null;
}

}

Code snippet 28.

By the way, using a garbage collector to handle memory
allocations instead of letting the programmer manage memory
manually may have security drawbacks. Indeed, when a pro-
gram manipulates secrets (passwords or cryptographic keys for
instance), one has to minimise the duration of their presence in
memory. He also has to ensure secure erasing by overwriting
them with other values, so that they are no longer accessible
via standard CPU instructions18. Those are common practice
to tackle e.g. with swaps of memory pages, crashes or other
situations in which the content of the memory is dumped and
made accessible. Network devices exporting their secrets in a
core dump after an easy-to-cause crash exist(ed).

Yet it is very hard (or even impossible) to control lifetime
of a secret data in presence of a garbage collector. For the
sake of performances, freed areas are generally not cleared by
the garbage collector, for example. Some garbage collectors
(e.g. the mark-and-copy flavor) might also spread the secrets
several times across the memory.

Note that the same type of concerns may arise from
other well-established mechanisms that have been developed to
preserve observable behavior of programs but not other types
of properties related to security. Erasure by overwritings, for
example, can be removed by a compiler during optimisation
(as there is no later readings), neutralised by cache mechanisms
or flash memory controllers moving around physical writings
to avoid fatigue of memory cells, and so on.

V. ABOUT ASSURANCE

Software and cathedrals are very much the same –
first we build them, then we pray

Sam Redwine

Developing correct and robust applications is difficult, and
it has become even harder due to the increasing complexity
of the manipulated concepts and systems. Furthermore, as
mentioned in Sec. I, it is in general useless in industrial
environments to have a secure software without knowing
for sure that it is indeed secure. This also applies in other
domains such as transportation systems, and leads to the notion
of certification process, such as [IEC]. In IT security, the
equivalent standards are the Common Criteria [CC], which
define different evaluation assurance levels (EALs).

Security certification relies on analyses of the program
and of its development process by independent evaluators, a
process known as security evaluation. Discussing the intrinsic

17Source: http://thedailywtf.com/Articles/Java-Destruction.aspx; beyond the
source code presented, many comments are worth reading to understand the
level of culture regarding memory handling.

18We are not talking here about physical attacks on memory chips or mass
storage systems, so-called cold boot attacks, as described in [HSH+09].

148148148

security characteristics of languages therefore requires appro-
priate consideration of the helps and limits that applies to the
evaluation process. This includes for example an appreciation
of the genuine understanding of both developers and evaluators
of the features and mechanisms used. This is why we do
not consider most advanced language constructs as fitted for
critical developments, simpler approaches generally allowing
for higher level of assurance.

There are two ways of constructing a software de-
sign. One way is to make it so simple that there
are obviously no deficiencies. And the other way is
to make it so complicated that there are no obvious
deficiencies.

C.A.R Hoare

A. About specifications

In our view, developing an adequate level of mastery of
the constructs of a language requires both practice and theory.
The latter has not to rely on academic publications but can be
addressed by proper specifications for the language, e.g. with
well-defined semantics for its main constructs, including the
standard library. But consider as a counter example this extract
of the JAVA specification for the Object class:

The general intent is that, for any object x, the ex-
pression: x.clone() != x will be true, and that the ex-
pression: x.clone().getClass() == x.getClass() will
be true, but these are not absolute requirements.
While it is typically the case that: x.clone().equals

(x) will be true, this is not an absolute requirement.

In essence, it provides no requirements, and it would be
unreasonable to expect anything about clone – and more so
facing various implementations. This type of problem arises
quite often, and various constructions in several languages ap-
pear to be only partially specified, voluntarily or not, explicitly
or not. Let us consider for example two extracts of [KR88] for
the C language:

The meaning of ”adding 1 to a pointer” and by
extension, all pointer arithmetic, is that pa+1 points
to the next object, and pa+i points to the i-th object
beyond pa.

The direction of truncation for / and the sign of
the result for % are machine-dependent for negative
operands, as is the action taken on overflow or
underflow.

As already mentioned, the first extract appears relatively
clear, even if it is informal; yet it says nothing about the
expected behavior for function pointers. The second extract is a
good example of a non deterministic specification: at least, the
reader is explicitly informed that there is no guarantee about
the result e.g. of -1/2.

It is worth mentioning at this stage that non-deterministic
specifications can be tricky to handle. How would you test
a compiler to check that the result of -1/2 complies with this
specification? In general, the proposal is to check that it yields
either 0 or -1, but we would argue that this is not sufficient.
Indeed, an implementation returning one or the other according

to other parameters (e.g. time of the day or a secret value)
would not be rejected. Yet you can be sure that having -1/2

not always equal to -1/2 (that is loosing reflexivity) would
have consequences on the robustness of any software.

This is an instance of a problem known as the refinement
paradox in formal methods such as B [Abr96]: given the non-
deterministic specification b← getb � b := � [] b := ⊥ (that is
getb is an operation returning a value b which is either true
or false), one often consider only the two constant solutions
b← getb � b :=� and b← getb � b :=⊥. Yet there are other
compliant implementations of getb in which the return value b
is still in {⊥,�} but depends upon dynamic values. This notion
of refinement paradox19 applies to refinement-based methods
such as B, but also to other formal methods such as COQ

[Jae10].

As a summary, we prefer languages to be specified as
completely, explicitly and formally as possible, avoiding non
deterministic or partial properties. But we would also like to
have tools such as compilers that provide errors and warnings
when facing unspecified, discouraged or forbidden construc-
tions.

B. About code signature

Code review by independent evaluators is a standard pro-
cess in security evaluation. One has to question its relevance
e.g. when dealing with object-oriented languages. In JAVA,
accessing a variable can lead to dynamic loading and execution
of code. Consider the following definition of a Mathf class:

class Mathf {
static double pi=3.1415;
static { // Do whatever you want here

System.out.println("Bad things happen!");
// Do not return to calling class
System.exit(0); }

}

Code snippet 29.

A JAVA program merely accessing Mathf.pi will execute the
initialisation code of the Mathf class available on the system.
The scope of the evaluation is therefore much broader, as non-
executable files representing JAVA classes on the execution
platform at runtime (rather than on the development platform
at compile-time) have to be considered as well, as for the
deserialization example of Sec. IV. This is one of the mech-
anisms supporting ad hoc polymorphisms in object-oriented
languages; by comparison, the ADA genericity (with code
specialisation at compilation) or the OCAML polymorphism
(a single code for values of different types) are much more
easy to manage.

In some cases, to compensate the lack of guarantees on the
program which is actually executed, it is possible to rely on
signature – provided signature checks cannot be avoided (and
that public keys cannot be tampered with, that cryptographic
protocols ensure required properties, etc.). It is usual for
example in JAVACARD to verify the bytecode and sign the
applet off-line, to avoid embedding a bytecode verifier in the
card. However, defensive checks of source code properties (or
proof-carrying codes) and code signatures have very different
goals: the former aims at ensuring that a program behaves
correctly whereas the latter only deals with its origin. In

19The term paradox is an overstatement, see e.g. [MM04].

149149149

particular, code signing says nothing about the competence
of the signer. All in all, code signing is useful for low-level
libraries, when other defensive checks are not yet available.
Here, the innocuousness of such code should be checked by
source code audit and vulnerability analysis, signature only
providing authentication on the execution platform (instead of
any guarantee about the behavior of the code).

C. The critical eye of the evaluator

The different examples presented in the previous sections
show that an evaluator should be aware of the numerous traps
of programming languages.

When the evaluation process includes a source code audit,
a good knowledge of the involved programming languages can
help the evaluators, but we believe it is more important that
they have a deep understanding of the features provided by
the language and used by the developers. For example, object-
oriented paradigm and serialization mechanisms are pervasive.
The potential security issues are the same across programming
languages implementing them. We have also discussed the very
generic concept of code injection.

As we saw earlier, as the developer’s intuition might be
shattered by some constructions, it is also important to question
the properties advertised by the language and their practical
robustness: for example, checking that a private field is indeed
not accessible may be rewarding, as in the JAVA inner class
example discussed in Sec. II.

Finally, as illustrated in the Sec. IV, the evaluation of a
product should depend on the intended final build process
and the target runtime environment, since low-level details
matter, and may vary from one platform to another. It is not
rare to observe important differences between development
and production builds, like the optimisation level; this may
lead to different behaviors in practice, and even to real-world
vulnerabilities as in the C undefined behavior case.

D. About formal methods

Beware of bugs in the above code; I have only proved
it correct, not tried it.

Donald Knuth

At this stage, some of the readers may consider that the
previous concerns raised would be solved by using deductive
formal methods, allowing for proving program compliance
with specifications, such as e.g. the B method [Abr96] or the
COQ proof assistant [Coq].

According to our analyses, this would be overoptimistic,
as some of the problems pointed out still apply, and formal
methods come with their own traps for inattentive developers
or evaluators. This is discussed at length in [JH09], [Jae10],
dealing with validity and completeness of the specification, the
limits of expressivity of the formal languages, inconsistencies
in the formal theory or bugs in the tools, trusted translations
from formal to standard (executable or compilable) languages,
and last but not least not satisfying explicit or implicit hy-
potheses when using proven software.

For example, in 2004 a variant of SSH was proven secure
[Bel04], whereas in 2009 a plaintext-recovering attack was

discovered [APW09]. In the former paper, Bellare et al. made
an implicit assumption by working with binary streams already
split into messages, whereas the attack presented indeed relied
on this split operation.

VI. LESSONS LEARNED AND PROPOSALS

We have considered numerous aspects of programming
languages, trying to identify concerns when security is at stake.
Rather than to attempt to provide definitive conclusions about
which language should be used, we just provide a list with
a few lessons that we learned during our journey, as well as
some proposal for the way ahead.

A. Languages and tools design

First of all, as mentioned in the very beginning of this
paper, we have been surprised to find that security of lan-
guages, when considered at all, was often so with a very
narrow scope or wearing blinkers20. It is already common
knowledge that designing languages is hard, in all likelihood
an order of magnitude harder than learning and mastering a
language. However, in the light of our work, some additional
requirements should be taken into account.

If we certainly appreciate works related to more expressive
type systems or the native integration of security mecha-
nisms, we would like to avoid having feet of clay. This
is why we advocate additional foundation works, defining
which characteristics of languages are desirable to cope with
security for critical developments. This requires considering
common vulnerabilities or limits, as well as studies of how
properties can be ensured or preserved from the theory to the
real execution environment, and careful consideration of the
robustness of the proposed mechanisms. We do not request
new languages to be defined, but at least that evolutions of
existing ones are discussed with some considerations about
security in mind.

To add a few remarks about languages design when security
is at stake:

- theoretical elegance must never go against developers’
(or evaluators’) intuition;

- eliminate non-determinism in the specification, and
make explicit as far as possible undefined behaviors;

- always consider the advantages of new constructions
but also the added complexity for developments or
evaluations.

Beyond the language itself, attention should be payed to the
associated tools, such as compilers, debuggers, or analyzers:

- avoid laxism, unspecified or undefined constructs
should be tracked and signaled;

- ban silent manipulations;

20JAVA 8, published in March 2014, advertises on improved security, that
is new cryptographic algorithms, better random generators, support for TLS,
or PKCS�11 to cite a few. Yet we worry about the actual gains security-wise
as these evolutions, in practice, may translate into additional vulnerabilities in
an ever-more complex stack of codes and protocols build on sands.

150150150

- consider new compilation invariants or instrumenta-
tion, e.g. to preserve type information, encapsulation,
execution flow21;

- secure development tools should protect themselves
against specifically crafted malicious inputs;

- ease inspection of actual program executed at runtime
and traceability with source code;

- long-term goals should include the development of
trusted (or certified) tools, such as the CompCert
initiative [Ler11], [Dar09].

The robustness principle (also known as Postel’s law) states
that you should be conservative in what you do and liberal in
what you accept. It aims at improving interoperability, but is
not, in our view, appropriate when security is at stake.

B. Training developers and evaluators

Beyond messages addressed to language and tool special-
ists, we would also like to mention a few recommendations
related to the education of developers – at least those dealing
with critical systems and security concerns22 – which are of
course also applicable to security evaluators.

First of all, developers should be ready, beyond functional
approaches (checking that what should work works), to also
adopt dual approaches (checking that what should not happen
never happens). This includes for example worst-case reason-
ings related to unsatisfied pre-conditions, out-of-range values,
ill-formed messages, etc. and can be supported by review of
most common vulnerabilities and attacks.

Second, as attackers are always looking for the weakest
link, developers should be able to have a broad vision encom-
passing most of the avenues of attacks. To this aim, we have
the feeling that one has to learn the basics in several domains
such as language semantics, compilation theory, operating
system principles, computer architecture. These are, basically,
the subjects that have been discussed in this paper when
considering illustrations of our concerns.

VII. CONCLUSION

In this paper, we presented some of the points we consider
worth looking at while assessing the contribution of a language
to the security of the programs written with this language, be
they at the theoretical or the syntactic level, be they related to
the compilation, the execution or the evaluation phase. This led
us to propose some recommendations. We strongly believe that
all the presented aspects should be taken into account when
considering what languages bring to the security table.

REFERENCES

[Abr96] J.R. Abrial. The B-Book - Assigning Programs to Meanings.
Cambridge University Press, August 1996.

21To cope with physical or logical fault injections.
22Quite often, IT security is expected to be managed only and independently

by IT security experts through patches, intrusion detection systems, boundary
protection devices, and so one. Yet we consider it is impossible to deal
appropriately with security this way. Every developer should therefore be
security-literate, in order not to introduce vulnerabilities to start with.

[Ale96] Aleph One. Smashing The Stack For Fun And Profit. Phrack,
49, 1996.

[ANS10] ANSSI. Sécurité et langage Java. http://www.ssi.
gouv.fr/fr/anssi/publications/publications-scientifiques/
autres-publications/securite-et-langage-java.html, 2010.

[ANS13] ANSSI. LaFoSec : Sécurité et langages
fonctionnels. http://www.ssi.gouv.fr/fr/anssi/
publications/publications-scientifiques/autres-publications/
lafosec-securite-et-langages-fonctionnels.html, 2013.

[APW09] M.R. Albrecht, K.G. Paterson, and G.J. Watson. Plaintext
recovery attacks against SSH. In IEEE SSP, 2009.

[Atw] J. Atwood. Coding Horror. http://www.codinghorror.com/blog.

[Bel04] M. Bellare. Breaking and provably repairing the SSH authen-
ticated encryption scheme: A case study of the encode-then-
encrypt-and-mac paradigm. ACM TISS, 7:206–241, 2004.

[CC] ISO/IEC 15408: Common criteria for information technology
security evaluation. http://www.commoncriteriaportal.org.

[CJRR99] S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In CRYPTO,
pages 398–412, 1999.

[Clu03] J. Clulow. On the security of PKCS#11. In CHES, 2003.

[Coq] The Coq proof assistant. http://coq.inria.fr.

[Dar09] Z. Dargaye. Vérification formelle d’un compilateur pour
langages fonctionnels. PhD thesis, Université Paris 7, 2009.

[DW] The daily WTF: Curious perversions in information technology.
http://thedailywtf.com.

[FO] functional orbitz. http://functional-orbitz.blogspot.fr.

[GP99] L. Goubin and J. Patarin. DES and Differential Power Analysis
The ”Duplication” Method. In CHES, 1999.

[HA05] K. Hayati and M. Abadi. Language-based enforcement of
privacy policies. In Privacy Enhancing Technologies, LNCS
3424. Springer, 2005.

[HSH+09] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. Calandrino, A. Feldman, J. Appelbaum, and E. Felten. Lest
we remember: cold-boot attacks on encryption keys. Commun.
ACM, 52(5):91–98, 2009.

[IEC] IEC 61508: Functional safety of electrical, electronic,
programmable electronic safety-related systems.
http://www.iec.ch/zone/fsafety/.

[Jae10] É. Jaeger. Study of the Benefits of Using Deductive Formal
Methods for Secure Developments. PhD thesis, EDITE, 2010.

[JH09] É. Jaeger and T. Hardin. A few remarks about formal devel-
opment of secure systems. CoRR, abs/0902.3861, 2009.

[Koi] S. Koivu. (Slightly) Random Broken Thoughts.
http://slightlyrandombrokenthoughts.blogspot.fr.

[KR88] B.W. Kernighan and D.M. Ritchie. The C Programming
Language. Prentice-Hall software series. Prentice Hall, 1988.

[LC02] K. Lhee and S.J. Chapin. Buffer overflow and format string
overflow vulnerabilities. Software: Practice and Experience,
33:423–460, 2002.

[Ler11] X. Leroy. Verified squared: does critical software deserve
verified tools? In 38th symposium Principles of Programming
Languages. ACM Press, 2011. Abstract of invited lecture.

[Mil84] R. Milner. A proposal for standard ml. In LISP and Functional
Programming, pages 184–197, 1984.

[MM04] A. McIver and C. Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Monographs in Computer Science.
Springer Verlag, 2004.

[MT91] R. Milner and M. Tofte. Commentary on standard ML. MIT
Press, 1991.

[Pie02] B.C. Pierce. Types and Programming Languages. MIT Press,
2002.

[WL99] P. Weis and X. Leroy. Le langage Caml. Dunod, 1999.

[WZKSL13] X. Wang, N. Zeldovich, M.F. Kaashoek, and A. Solar-Lezama.
Towards optimization-safe systems: Analyzing the impact of
undefined behavior. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, 2013.

151151151

