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Abstract—Cyber security attacks are becoming ever more fre-
quent and sophisticated. Enterprises often deploy several security
protection mechanisms, such as anti-virus software, intrusion
detection/prevention systems, and firewalls, to protect their critical
assets against emerging threats. Unfortunately, these protection
systems are typically “noisy”, e.g., regularly generating thousands
of alerts every day. Plagued by false positives and irrelevant
events, it is often neither practical nor cost-effective to analyze
and respond to every single alert. The main challenge faced by
enterprises is to extract important information from the plethora
of alerts and to infer potential risks to their critical assets. A better
understanding of risks will facilitate effective resource allocation
and prioritization of further investigation. In this paper, we present
MUSE, a system that analyzes a large number of alerts and
derives risk scores by correlating diverse entities in an enterprise
network. Instead of considering a risk as an isolated and static
property, MUSE models the dynamics of a risk based on the
mutual reinforcement principle. We evaluate MUSE with real-
world network traces and alerts from a large enterprise network,
and demonstrate its efficacy in risk assessment and flexibility in
incorporating a wide variety of data sets.

I. INTRODUCTION

Mitigating and defending against ever more frequent and so-
phisticated cyber attacks are often top priorities for enterprises.
To this end, a plethora of detection and prevention solutions
have been developed and deployed, including anti-virus soft-
ware, intrusion detection/prevention systems (IDS/IPS), black-
lists, firewalls, and so on. With these state-of-the-art technolo-
gies capturing various types of security threats, one would
expect that they are very effective in detecting and preventing
attacks. In reality, however, the effectiveness of these systems
often fall short. The increasingly diversified types of cyber
attacks, coupled with increasing collection of applications,
hardware configurations, and network equipments, have made
the enterprise environment extremely “noisy”. For example,
IDS/IPS systems regularly generate over 10,000 alerts every
day. Majority of them turn out to be false positives. Even true
alerts are often triggered by low level of threats such as brute-
force password guessing and SQL injection attempts. Although
the suspicious nature of these events warrants the reports by
IPS/IDS systems, they often only made the situation more noisy.

Digging into the haystack of alerts to find clues to actual
threats is a daunting task that is very expensive, if not impossi-
ble, through manual inspection. As a result, most IPS/IDS alerts
are often stored in a database merely for forensic purposes.
These alerts are investigated only after significant incidents
are discovered or critical assets are already severely damaged,
e.g., security breaches, and data leakage. On the other hand,
even some true positive alerts (e.g., device compromise, virus
infection on a user’s computer) are often too voluminous to
become security analysts’ top priority. This is because these
alerts are considered as low level of threats and pose far less
risks to the enterprises comparing with severer attacks, such as

server compromise or sensitive data leakage. Evidently, more
effective solutions require better understanding and ranking of
potential risks to enterprise assets so that resources can be
prioritized and allocated according to the severity of the risks.

In a typical enterprise environment, as shown in Figure 1,
there are different sets of entities: servers, devices, users,
credentials and (high-value) assets (e.g., databases, business
processes). The connections between entities represent their
intuitive relationships; for example, a user may own multiple
devices. We note that the reputation of entities provide valuable
indicators into its associated risks, and are important factors
to rank security incidents, e.g., alerts, and anomalies. More
importantly, the reputation of an entity and the risk it may
produce are not confined to the entity. In fact, multiple entities
are often tied together in a mutually reinforcing relationship.

In this paper, we propose MUSE (Mutually-reinforced
Unsupervised Scoring for Enterprise risk), a risk analysis
framework that analyzes a large amount of various security
alerts and computes the reputation of diverse entities based on
domain knowledge and interactions between entities. Specifi-
cally, MUSE exploits the interactions as reflected in composite
bipartite graphs where each pair of entity types (e.g., a user
and a device) can form one bipartite graph. MUSE then ap-
plies an iterative propagation algorithm to utilize the mutual
reinforcement between the connected entities and to derive
their reputation and risk score simultaneously. Finally, with the
refined risk scores, MUSE is able to provide useful information
such as ranking of low reputation entities and potential risks to
critical assets, allowing security analysts to make an informed
decision as to how resources can be prioritized for further
investigation. MUSE will also provide greater visibility into the
set of alerts that are responsible for an entity’s low reputation,
offering insights into the root cause of cyber attacks. Our
contributions include: 1) a mutual reinforcement framework
to analyze the reputation and the risk of diverse entities in
an enterprise network, 2) a scalable propagation algorithm to
exploit the networking structures and identify potential risky
entities that may be overlooked by a discrete risk score, 3)
a highly flexible system that can incorporate data sources in
multiple domains, and 4) evaluations with real network traces
from a large enterprise to verify the efficacy of MUSE.

II. RISK AND REPUTATION IN A MULTI-ENTITY
ENVIRONMENT

A. Problem Formulation

In a typical enterprise environment, there are multiple sets
of connected entities as shown in Figure 1. Specifically, we
consider five distinct types of entities: users U , devices D,
credentials C, high value assets A, and external servers S.
These entities are often related in pairwise many-to-many
relationships. For example, a device can access multiple external
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Fig. 1. Entities in a typical enter-
prise network

Fig. 2. Network of interactions
among multiple entities

servers. A user may own several devices, while one device (e.g.,
server clusters) can be used by multiple users.

We model the inter-connection between entities as a com-
posite bipartite graph G = (V,E), schematically shown in
Figure 2. In G, vertices V = {U ,D, C,A,S} represent entities,
and edges E of bipartite graphs represent their relationships:
E = {MDS ,MDU ,MDA,MUC ,MDC} where MDS is
the |D|-by-|S| matrix containing all the pairwise edges, i.e.,
MDS(i, j) > 0 if there is an edge between device di and
external server sj . The value of MDS(i, j) denotes the edge
weight derived from the characteristics of the relationship, such
as the number of connections, the number of bytes transmitted,
duration, and so on. Similarly,MDS ,MDU ,MDA,MUC , and
MDC are the matrices of the pairwise edges representing the
association of their respective entities.

Next we define the risk and the reputation of entities more
precisely. We treat each entity as a random variable X with a
binary class label X = {xR, xNR} assigned to it. Here xR is
a risky (or bad) label, and xNR is a non-risky (or good) label.
A probability distribution P is defined over this binary class,
where P (xR) is the probability of being risky and P (xNR) is
the probability of being non-risky. By definition, the sum of
P (xR) and P (xNR) is 1. We use this probabilistic definition
because it allows a natural mapping between P (xNR) and
the general concept of reputation, i.e., an entity with a high
probability of being good (or non-risky) is expected to have
high reputation. In addition, it accepts different types of entities
to incorporate specific domain knowledge into the reputation
computation considering their respective characteristics, e.g.,

External Server Reputation ps = Ps(xNR) indicates the
server’s probability of being malicious and infecting the clients
connecting to it. A low reputation ps indicates high probability
of being malicious. Device Reputation pd = Pd(xNR) rep-
resents the probability that a device may have been infected
or compromised. User Reputation pu = Pu(xNR) indicates
how suspiciously a user behave, e.g., an unauthorized access
to sensitive data. Credential Reputation pc = Pc(xNR)
denotes the probability that a credential may have been leaked
to the adversaries and thus making any servers associated
with the credential vulnerable. High Value Asset Reputation
pa = Pa(xNR) denotes the asset’s probability of being risky,
such as unauthorized accesses, data extrusion, and so on.

Since there is a natural correlation between reputation and
risk (e.g., less reputable entities generally pose high risks), we
define an entity’s risk as P (xR) = (1− P (xNR)) weighted by
the importance of the entity, such that a high value asset will
raise a high risk even with a small decline in its reputation.

With these definitions, the goal of MUSE is to aggregate large
amounts of security alerts, determine the reputation of each
entity by exploiting structural relationships among entities, and
finally output the rankings of risky entities as candidates for
further investigation. In the next section, we will describe the
mutual reinforcement principle [1] that underlies MUSE.

B. Mutual Reinforcement Principle

Intuitively, one can see that entities’ reputation and risk are
not separated; instead, they are closely correlated and depen-
dent. While interacting with each other, an entity’s reputation
can impact on the risk associated with its neighbors, and at the
same time, the entity’s risk can be dependent on the reputation
of its neighbors. For example, a device is likely to be of
low reputation 1) if the websites it frequently visits are listed
in blacklists and are considered as suspicious/malicious, 2) if
the users using the device have bad reputation, and 3) if the
credentials used to log into the device have high risks of being
compromised, leaked, or even used by an unauthorized user.
Similarly, a credential’s risk of being exposed will increase if it
has been used by a less reputable user and/or on a device yield-
ing suspicious behavior patterns. Similarly, a user will have low
reputation if the user owns several low-reputation devices and
credentials. Last but not least, a high value asset or the sensitive
data stored in internal servers is likely to be under a significant
risk if it is accessed by multiple low-reputation devices. We
describe these mutually dependent relationships more formally
in our multi-layer mutual reinforcement framework, using the
following set of equations governing the server reputation ps,
device reputation pd, user reputation pu, credential reputation
pc, and high-value asset reputation pa.

pd ∝ ωds
∑
d∼s

mdsps + ωdu
∑
d∼u

mdupu + ωdc
∑
d∼c

mdcpc

pu ∝ ωdu
∑
d∼u

mdupd + ωuc
∑
u∼c

mucpc

pc ∝ ωuc
∑
u∼c

mucpu + ωdc
∑
d∼c

mdcpd

pa ∝ ωda
∑
d∼a

mdapd + ωua
∑
u∼a

muapu + ωca
∑
c∼a

mcapc,

where d ∼ s, d ∼ u, . . . represent edges connecting device d
with server s and user u, . . ., ∝ means “proportional to”, ωij
indicates the weights associated with edges and reputation types
and mij is the value in the connectivity matrices. We exploit this
mutual reinforcement principle in the bipartite graph network
to simultaneously estimate the reputation and the risk using the
propagation algorithm described in the next section.

C. Reputation Propagation Algorithm

Due to the tight correlation and connection between entities
in an enterprise network, we employ the principle of belief
propagation (BP) [12] on the large composite bipartite graph
G to exploit the link structure and efficiently compute the
reputations for all entities. Belief propagation is a message
passing algorithm on general graphs and has been widely used
in many graph inference and labeling tasks [2] such as social
network analysis, fraud detection, and computer vision.

At the high level, the algorithm infers the properties of a
node (in our case, the reputation of an entity) in the graph
based on two sources of information: 1) the prior knowledge
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ψ(xi, xj) xi = xNR xi = xR

xj = xNR 0.5 + ε 0.5− ε
xj = xR 0.5− ε 0.5 + ε

TABLE I. EDGE POTENTIAL FUNCTION

about the node itself, and 2) information about the neighbor
nodes. The inference is achieved by iteratively passing messages
between all pairs of nodes ni and nj . Let mi,j denotes the
“message” sent from i to j. The message represents i’s influence
on j’s reputation. One could view it as if i, with a certain
probability of being risky, passes some “risk” to j. Additionally,
the prior knowledge about i (e.g., importance of the assets, and
a user’s anomalous behavior) is expressed by node potential
function φ(i) which plays a role in determining the magnitude
of the influence passed from i to j. In details, edge ei,j is
associated with message mi,j (and mj,i if the message passing
is bi-directional). The outgoing message from i to neighbor j is
updated at each iteration based on the incoming messages from
i’s the other neighbors and node potential φ(i) as follows.

mi,j(xj)←
∑

xi∈{xR,xNR}

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mk,i(xi),

where N(i) is the set of i’s neighbors, and ψi,j is the edge
potential which is a transformation function defined on the edge
between i and j to convert a node’s incoming messages into
its outgoing messages. Edge potential also controls how much
influence can be passed to the receiving nodes, depending on the
properties of the connections between i and j (e.g., the number
of connections, and volume of traffic). ψ(xi, xj) is typically
set according to the transition matrix shown in Table I, which
indicates that a low reputation entity (e.g. a less reputable user)
is more likely to be associated with low reputation neighbors
(e.g. compromised devices). The algorithm runs iteratively and
stops when the entire network is converged with some threshold
T , i.e., the change of any mi,j is smaller than T , or a maximum
number of iterations is done. Convergence is not theoretically
guaranteed for general graphs; however the algorithm often does
converge for real-world graphs in practice. At the end of the
propagation procedure, each entity’s reputation is determined
by the updated messages and normalization constant k.

p(xi) = kφi(xi)
∏

j∈N(i)

mj,i(xi); xi ∈ {xR, xNR}

D. Incorporating Domain Knowledge

The main challenge of adapting a BP algorithm is to
determine its parameters, in particular, the parameters in the
node potential and the edge potential function. In this section,
we briefly discuss how we leverage the available data sources
in a typical enterprise network and incorporate specific domain
knowledge (unique to each entity type) to infer the parameters.

Characteristics of External Servers S: We develop an IDS
system that leverages several external blacklists to inspect all the
HTTP traffic. It flags different types of suspicious web servers
to which internal devices try to connect. We classify suspicious
servers into the following five types. 1) Spam websites are
flagged by external spam blacklists like Spamhaus. 2) Malware
websites host malicious software including virus, spyware, ran-
somware, and other unwanted programs. 3) Phishing websites
pretend to be popular websites, such as bank websites to lure
unsuspecting users to obtain their login credentials. Recently,
spear phishing attacks, which exploit personal information

about the target victims to increase the probability of success,
become one of the major threats to enterprises. Because of
its potential to cause severe damage, we assign a high risky
value to its node potential. 4) Exploit websites host exploit
toolkits, such as Blackhole and Flashpack, which are designed
to exploit vulnerabilities of the victims’ web browsers and
install malware on victims’ machines. 5) Botnet C&C servers
are connected with bot programs to command instructions,
update bot programs, or to extrude confidential information. If
an internal device makes an attempt to connect to any known
botnet C&C servers, the device is likely to be compromised.
In addition to blacklists (e.g., Zeus Tracker), we also design
models to detect fast fluxing and domain name generation
botnets based on their distinct DNS request patterns. Using the
categorization of suspicious servers, we determine initial node
potential values according to the severity of their categories. We
assign (φ(xR), φ(xNR)) = (0.95, 0.05) for the high-risk types,
such as botnets and exploit servers; while we assign (0.75, 0.25)
and (0.6, 0.4) for the medium- and low-risk types, respectively.

Characteristics of Internal Entities D,U , C,A: For internal
entities, e.g., devices, users, credentials, and assets, rich infor-
mation can be obtained from the internal asset management
systems and IPS/IDS systems. Available information include
device’s status (e.g., OS version, patch level), device behavior
anomalies (e.g., scanning), suspicious user activities (e.g., ille-
gal accesses to sensitive data, multiple failed login attempts),
and credential anomalies (e.g., unauthorized accesses). We
adjust node potential for the internal entities based on the
information by assigning a severity score to each type of
suspicious activities exemplified above. Since entity i can be
flagged multiple times for several different types of suspicious
behaviors, we first sum the severities of all suspicious activities
to get total severity Si. To avoid being over-shadowed by a
few outliers, we transform the severity using sigmoid function
Pi =

1
1+exp(−Si)

. The node potential for i is then calculated as
(φ(xR), φ(xNR)) = (Pi, 1 − Pi). Another benefit of using the
sigmoid function is that if no alerts have been reported for an
entity, its initial node potential will automatically be (0.5, 0.5)
implying that no prior information exist for the particular entity.

Although the parameters in MUSE require some level of
tuning and manual assignment, it is valuable to security analysts
in several aspects. First, the output of MUSE is the ranking of
high-risk entities whose absolute risk values are less meaning-
ful. As long as the parameters are assigned based on reasonable
estimation of the severities of different types of alerts, MUSE
will provide useful information to help analysts prioritize their
investigation. Second, MUSE offers flexibility to incorporate
diverse entity types and can be easily adapted for a wide variety
of other domains. On the other hand, it is possible to automat-
ically learn the appropriate parameter values through machine
learning techniques provided that proper labeled training sets
are available, which is our plan for future exploration.

III. EVALUATION

A. Data Sets

We evaluated MUSE with data sets collected from multiple
data sources in a large enterprise network for over one week.
The data sources included DNS messages from local DNS
servers, network flows from edge routers, proxy logs, IPS alerts,
and HTTP session headers (for categorization of websites). The
volume of the raw data per day was about 200 GB. The resulting
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graph consists of 11,790 nodes and 44,624 edges. The number
of different entity types1 are shown in Table II.

Server Device User AssetsSpam Malware Phishing Exploit Botnet
5500 124 10 26 16 3823 2191 100

TABLE II. NUMBER OF DIFFERENT ENTITIES

B. Experiment Results

We applied MUSE to the graph, and our algorithm con-
verged at the 5th iteration. We manually inspected top ranked
entities (i.e., with higher P (xR)) in each entity type, and
confirmed they were indeed suspicious entities. Due to the space
constraint, we discuss one example of user reputation among
our findings. We selected 5 top risky users based on the output
of MUSE. Figure 3 shows their risk values at each iteration.
Note that all the users started with neutral score (0.5, 0.5),
meaning that these users had not been flagged by anomalous
behaviors. However, due to their interaction with low reputation
neighbors, their associated risks increased. Further investigation
showed that user332755 owned 5 devices which made 56
times of connections to spam websites, 4 times of connections
to malware websites, and 2 times of connections to exploit
websites during our monitoring period. user332755 inherited
low reputation from his neighbors including the user’s devices,
causing his risk to quickly rise to the top.

We also measured the running time of MUSE at each
iteration against the size of the graph in terms of the number
of edges. As shown in Figure 4, the running time quadratically
increased, which can be a bottleneck to handle large graphs.
However, belief propagation can be distributed and executed in
parallel, providing scalability to process large graphs [10].

Fig. 3. Risk scores of top 5 risky
users at the end of each iteration

Fig. 4. Running time for each itera-
tion with varying sizes of graphs

IV. RELATED WORK

With the cyber threats rapidly evolving towards large-scale
and multi-channel attacks, security becomes crucial for organi-
zations of varying types and sizes. Many traditional intrusion
detection and anomaly detection methods focused on a single
entity and applied rule-based approaches [3]. They were often
too noisy to be useful in practice [11]. Our work is inspired by
the prominent research in the social network area that used a
link structure to infer knowledge about the network properties.
Previous work demonstrated that social structure was valuable
to find authoritative nodes [6], to infer individual identities [5],
to combat web spam [4], and to detect security fraud [8].
Among various graph mining algorithms, the belief propagation
algorithm [12] has been successfully applied in many domains,
e.g., detecting fraud [9], accounting irregularities [7], and

1Due to the privacy issues, we were not able to include authentication logs
to incorporate user credentials in our experiments.

malicious software [2]. For example, NetProbe [9] applied a
BP algorithm to the eBay user graph to identify subgraphs of
fraudsters and accomplices.

V. CONCLUSION

In this paper, we proposed MUSE, a framework to sys-
tematically quantify and rank risks in an enterprise network.
MUSE aggregated alerts generated by traditional IPS/IDS on
multiple data sources, and leveraged the link structure among
entities to infer their reputation. The key advantage of MUSE
was that it derived the risk of each entity not only by considering
its own characteristics but also by incorporating the influence
from its neighbors. This allowed MUSE to pinpoint a high-risk
entity based on its interaction with low reputation neighbors,
even if the entity itself was benign. By providing risk rankings,
MUSE helps security analysts to make an informed decision on
allocation of resources and prioritization of further investigation
to develop proper defense mechanisms at an early stage.
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