
Digital Forensic Reconstruction of A Program Actions

Ahmed F.Shosha, Lee Tobin and Pavel Gladyshev

School of Computer Science and Informatics

University College Dublin

Dublin, Ireland.

{ahmed.shosha, lee.tobin}@ucdconnect.ie, pavel.gladyshev@ucd.ie

Abstract—Forensic analysis of a suspect program is a daily

challenge encounters forensic analysts and law-enforcement. It

requires determining the behavior of a suspect program found

in a computer system subject to investigation and attempting

to reconstruct actions that have been invoked in the system.

In this research paper, a forensic analysis approach for suspect

programs in an executable binary form is introduced. The

proposed approach aims to reconstruct high level forensic

actions and approximate action arguments from low level

machine instructions; That is, reconstructed actions will assist

in forensic inferences of evidence and traces caused by an

action invocation in a system subject to forensics investigation.

Keywords:Program Analysis, Data Flow Analysis, Digital

Forensic Investigation, Action Reconstruction, Static Code

Analysis.

I. INTRODUCTION

 In digital investigation, investigators are required to

analyze suspect executable binaries of programs found in a

system subject to investigation. Program analysis, generally,

can be accomplished in two-folds: () dynamic program

analysis [1-2] () static program analysis [3-4]. In dynamic

program analysis, a suspect binary is executed in a virtual or

emulated system and actions invoked in the concrete

execution (e.g. file created, registry modified, process

accessed) are monitored to determine the program behavior.

Concrete program execution of a program, however, has a

set of limitations [5-6]. Programs are comprised of several

execution paths and sets of configurations, and each path

can invoke several subsequent actions. An analysis system,

which a program is executed, is typically a standard and pre-

configured environment that barely similar to investigated

system. A program actions invoked in a concrete execution

on analysis system, as a result, may by different than actions

executed in a system subject to investigation. That is,

forensic analysis based on concrete execution may conclude

to invalid results. To supplement forensic investigation

based dynamic analysis approaches, static program analysis

is, then, introduced to the forensics investigation process.

 Fundamentally, static program analysis approaches aim

to approximate a behavior of a program if executed on a

computer system. Prevalent binary analysis frameworks,

(e.g. BAP [2], BitBlaze [7], or Jackstab [8]) proposed

different approaches that allow automating static analysis of

a vector of dependent machine instructions decoded from an

executable binary. Although, these approaches allow

analysis of tremendous security problems, they are however,

limited if used in forensic investigation of progr m’s

binary. These approaches address the problems related to

semantic analysis of low-level machine instructions and its

side effects [9] and do not approach the analysis of a

program actions that may change the final state of a system.

Forensic analysis of suspect programs, naturally, concerned

with reconstruction of high level program actions (e.g. file

modifications or registry manipulation) that change the final

state of a system and cause traces that assists the process of

evidence inferences. In previously mentioned static analysis

frameworks, instructions that handle action invocation and

termination, such as, call and ret are treated as basic

assignment and jump operations, and arguments of an action

in the procedure stack are not forensically considered in the

analysis. Thus, forensic analysis based on these approaches

may conclude the possibility of certain action invocation,

however, the detailed specifications of the action arguments

remain unspecified; i.e. a human investigator may infer, in

static code analysis, the possibility of file creation based on

existence of a file create action call instruction, however,

file specification cannot be determined due to the lack of

action arguments analysis in the procedure block stack.

 In this research, an action reconstruction approach is

proposed to determine invoked actions and compute an

approximation of action arguments in a procedure block. In

the proposed approach, an enhancement to interprocedural

analysis of a procedure block is proposed through modeling

the local stack frame. Modeled stack frame is, then,

augmented with a data flow analysis of action arguments to

allow approximation of argument passed to an action.

Determined actions and approximated action arguments

values will, subsequently, allow in inferences of program

traces and evidence and will assist in forensic reconstruction

of a program behavior in the system subject to investigation.

 The remainder of the paper is organized as follows: In

section Two, an intermediate language describing the

semantic of a program machine code is proposed; then, an

interprocedural analysis of program blocks and data flow

analysis of action and arguments are presented. In section

Three, the system implementation and preliminary

experimental results are described. Finally, section Four,

concludes the presented approach and proposes the future

research work.

2013 IEEE Security and Privacy Workshops

© 2013, Ahmed F. Shosha. Under license to IEEE.

DOI 10.1109/SPW.2013.17

119

2013 IEEE Security and Privacy Workshops

© 2013, Ahmed F. Shosha. Under license to IEEE.

DOI 10.1109/SPW.2013.17

119

Figure 1: A syntax of IL to Abstract a Program Sematic

II. FORENSIC ANALYSIS OF A PROGRAM

A. A Program Formalization

 To allow analysis of a progr m’s in ry execut le , a

simplified Intermediate Language (IL) [10-11] is proposed

to express the concrete semantic of low level instructions

belonging to a program subject to investigation. In proposed

IL, a program is a set of statements that represent

different operations over expression or a variable , i.e.

variable or memory assignment, conditional assessment of

an expression or jump to a specific program point . The

syntax of proposed IL is presented in Figure 1. A semantic

of statement in a program is modeled as a program state

at program point . A transition function model the

changes in a program state 〈 〉 〈 〉
 , and updates

the program counter . The operational semantic

of presented IL is shown in Figure 2. It defines

unambiguously the concrete execution of an investigated

program abstracted in IL. In IL operational semantic, each

statement is substituted with one or more production rules

that are depicted in Figure 2. All production rules are in the

following form:

Each production rule performs analysis to a statement state

before and after the concrete execution of the statement

sem ntics. The “ efore” n lysis is denoted s “St te Entry

An lysis”, where n ev lu tion of v ri le’s or expression’s

state that may be effected by a statement computation in the

context () is performed. While “After” n lysis, denoted

 s “St te Post Comput tion”, which valuate a variable or an

expression based on a statement semantic in the context of

statement state (). Evaluation and valuation of a variable

or expression are accomplished through proposed ̂

and ̂ operators, respectively.

 A Program, as well, is comprised of a set of procedure

blocks { }, such that, a procedure is

Figure 2: Concrete Operational Semantic of IL

comprised of a set of statements . A control flow

graph (CFG) of a given can be constructed using a

standard CFG construction technique such as presented in

[3]. Note that, a program based on previously illustrated

notation can be viewed as CFG of procedure blocks; where

each block is a node in the graph, and have entry point

 and exit point denoting the graph vertices.

The semantic of a state transition to a procedure ,

additionally to updating the program counter, allocates a

memory region to the local stack frame for local variables in

 and other conventional operations such as, caller and

callee saving registers [12]. Thus, in order to reason a

behavior of actions invoked in , a simplified modeling of

a local stack frame is proposed.

 A local stack frame of a procedure at determined

program point is formalized as a flat lattice 〈 ⟦ ⟧

 〉.

 ⟦ ⟧
 denotes an empty stack frame and

 ⟦

⟧

denotes the top of a stack. The size of a ⟦ ⟧

 is,

basically, computed based on statements ⟦ ⟧

that

semantically affect Consequently, a function ƒ is said to

increment or decrement ⟦ ⟧
 if at any program point

 in , there is a statement that semantically

affects ⟦ ⟧
 and ƒ is define as, ƒ 〈 ⟦ ⟧

 〉 ⟦ ⟧

where, ⟦ ⟧ is a set of data flow analysis computations

over , and it will be explained later.

B. Procedure Block Analysis

As explained, a procedure block is comprised of a set

of statements in which, allows in deducing

and deducing in ⟦

⟧

. Since a single may have

several execution paths based on its CFG, analysis of

actions invoked in required, primarily, identifying

<Statement > ::= < expression >

 |<variable> ::= < expression >

 |if < expression >: <statement>

else <statement>

 |<jump>: < statement >

<Expression > ::= <variable>

 |<assignment >

 |<test> <expression>

 |<valuation> <expression>

 |<unary-expression>

 |<binary-expression>

 | <value>

 ̂ ()

 ̂ () ⟦ ̂ ()⟧ () ()

<Assignment >:

 ̂ ()

 ̂ ⟦ ̂ ()⟧ () () ()

<Conditional Expression>:

 ̂ ()

 () ()

<Jump>:

Temp

 ⟦ Compute () ⟧

 ̂ Operator:

Temp ⟦ ̂ ()⟧

 ̂ Operator:

120120

possible paths that hold an action. As a preliminary

analysis, we formulate an execution path in CFG⟦ ⟧
 as a

trace that is a set of transitive statements starting at

 and ending at . Every trace is

corresponding to a concrete execution of subject of

analysis. Since several traces ⟦ ⟧ can be computed,

 ⟦ ⟧
 may have a different layouts, each corresponds to a

particular executed trace in . Thus, a stack frame of a

given trace can be given as ⟦ ⟧ ⟦ ⟧ ⟦ ⟧
 .

 To decrease the complexity of action reconstruction

from several traces found in several procedures, we restrict

traces subject to analysis to those, only, hold actions (e.g.

invokes OS system calls or services) and may change a

system final state, if executed.

 As a result, a forensic analysis of a procedure is only

accomplished to and its ⟦ ⟧.

C. Forensic Reconstruction of Actions

 In digital forensics, an action is an external event to a

system and action invocation may cause a creation or

modification of the system objects [13-15]. Inferences

and/or deduction of an action effect on a system objects in

forensic investigation, required reconstruction of the action

and associated specifications. To reconstruct an action from

low-level instructions, a set of statements ⟦ ⟧
 in

that invoke an action have to be determined and action

arguments have to be computed or approximated.

 To determine a trace hold a certain action, we defined a

set of possible actions that may be invoked by a program

binary and its default arguments as stated in the operating

system specification [16]. The possible actions set is

defined as 2-tuple of action and arguments 〈 〉,
where, {(〈 〉) (〈 〉)}
For every trace , if ⟦ ⟧

 invokes an

action ; is, then, labeled as and at is

labeled for further analysis.

 As shown in figure 3, a code portion of a trace from a

procedure block of a malicious program invoke actions at

program points 54 and 7C. Action at 54 accesses a file in

the system, while action in 7C creates a persistent service in

the system which leaves a trace that may assist a forensic

investigation. Determining an action may invoke at a certain

procedure block in a concrete execution, however, may not

completely assist an inference of forensic evidence unless

the arguments to the action are specified, as well. For

example, action at program point 7C can assist in inference

of system service creation, however, service specification

(e.g. name, desired access, path to a service binary image)

still unspecified. The service name of action at 7C is added

to ⟦ ⟧
 at , however, the value of a register variable

eax (an action argument register) has been defined through

several computations prior to stack decrementing at 71. To

compute or approximate action arguments, a data flow

analysis of arguments in ⟦ ⟧
 is proposed.

Figure 3: A Portion of a Trace Code from a Malicious Program

A standard data flow analysis technique denoted as variable

assignment definition [3] is employed to determine a set of

statements ⟦ ⟧
 that previously, assigned a value to an

argument register used in a subsequent action invocation.

Let { } denote a set of register variables

which ⟦ ⟧
 operates on. Let {〈 〉 〈

 〉} a

Poset of 2-tuple, of in where ⟦ ⟧
 has found to

valuate .

An assignment analysis of variables used in subsequent

invocation of an action can be defined as a backward trace

function ƒ- over ⟦ ⟧
 to trace values assigned to a

variable of interest from
 to ⟦ ⟧

 , such that:

 ƒ- ⟦ ⟧
 ⟦ ⟧

The set resulted is, then, mapped to an argument of action

at ⟦ ⟧, as follow:

ƒ 〈 ⟦ ⟧
 〉 ⟦ ⟧,

Finally, for every ⟦ ⟧, a concrete evaluation using

 ̂ and ̂ is accomplished to compute a concrete value

for action arguments subsequently computed though several

statements determined in ⟦ ⟧, as follow:

 ⟦ ⟧

ƒ 〈 ̂ ̂ 〉

As shown in Figure 3, an argument of action specified at 7C

is added ⟦ ⟧
 at . A backward trace function over

action argument at ⟦ ⟧
 back to ⟦ ⟧

 is

recursively invoked to determine ⟦ ⟧ that assigned a

value to variables used as arguments to action , (i.e.

 ⟦ ⟧ {〈 〉 〈 〉 〈 〉}).

48: lea eax, [esp+1Ch]

4C: push 3E8h

51: push eax #lpFileName

52: push 0

54: call ds:GetModuleFileNameA

62: lea ecx, [esp+414h+BinaryPathName]

66: push 0 #lpLoadOrderGroup

68: push ecx #lpBinaryPathName

69: push 0 #dwErrorControl

6B: push 2 #dwStartType

6D: push 10h #dwServiceType

6F: push 2 #dwDesiredAccess

71: push eax #ServiceName

7B: push esi #hSCManager

7C: call ds:CreateServiceA

…..

121121

 Table 1: A Sample Forensic Analysis of Malicious Programs

 ̂ and ̂ operators are, then, recursively operate over

to compute and valuate an argument variable, i.e. eax

defined in set.

III. IMPLEMENTATION AND PRELIMINARY RESULTS

A prototype program code disassembler and analyzer is

implemented to presented program forensics approach.

Developed prototype automates x86 executable binary

forensic investigation through decoding a suspect binary

machine-code and lift it to our proposed IL. Lifted

instructions are, then, automatically examined with the

proposed action reconstruction and arguments computing

algorithms, as described.

To evaluate the proposed approach, forensics analysis is

performed for different samples of malicious programs used

to commit cybercrimes, such as variants of Zeus (a malware

family for banking cybercrimes) and other ransom malware

program [17]. Every sample subject to investigation has

been forensically examined in our developed prototype and

concretely executed in managed system to evaluate the

preciseness of reconstructed actions relative to concrete

execution, and to determine whether all action arguments

have been successfully computed. A sample preliminary

result of presented approach is depicted in Table 1. As

shown in Table 1, a several forensic actions and associated

arguments have been, successfully, reconstructed from

machine code, and action traces have been located in the

system subject to investigation. The accuracy percentage

describes the percentage of successfully reconstructed

actions arguments values in compare to concrete execution.

In illustrated experimental results, the proposed approach

has successfully reconstructs a considerable set of actions

that have invoked in a concrete execution and computed

substantial percentage of action arguments values; however,

a set of action arguments have not been computed, since the

behavior of samples subject to investigation are developed

to execute based on runtime dynamic computation and

configuration parameters in the compromised systems. In

other words, several reconstructed actions in the samples are

operated on arguments that dynamically populated in run-

time from compromised systems, and hence, to approximate

such values, a detailed modeling of compromised system is

required to be included in the forensic analysis process.

IV. CONCLUSION

In this research work, an automated approach to extract

forensic actions from low-level machine code and

approximating action arguments values based on backward

data flow analysis algorithm is proposed. The proposed

approach allows in inference/deduction of evidence and

extraction of traces related to a suspect program in a system

subject to forensics investigation.

A prototype forensic analysis framework is, then,

developed and evaluated using different malicious programs

that regularly used to commit cybercrime activities.

REFERENCES

[1] M. Egele, T. Scholte, E. Kird , nd C. Kruegel, “A survey on

automated dynamic malware-analysis techniques and tools”,

ACM Computing Surveys, vol. 44, no. 2, pp. 1–42, Feb. 2012.
[2] T. A. Edw rd J. Schw rtz, “All you Ever w nted to know out

dynamic taint analysis and forward symbolic execution”, IEEE

Symposium on Security and Privacy, pp. 317–331, 2010.
[3] C. Nielson, F., Nielson, R., & Hankin, “Principles of program

analysis. Springer”, p. 450, 1999.

[4] M. Christodorescu nd S. Jh , “St tic n lysis of execut les to
detect malicious patterns”, 12th conf. on USENIX Security

Symposium - Vol. 12, P. 12, 2003.
[5] C. Malin, E. Casey, J. Aquilina,“Malware forensics: investigating

and analyzing malicious code”, Syngress, 2008.

[6] M. Br nd, C. V lli, nd A. Woodw rd, “M lw re forensics:
discovery of the intent of deception”, in Australian Digital

Forensics Conference, 2010.

[7] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosank m, nd P. S xen , “BitBl ze:

a new approach to computer security via binary an lysis”, in Intl,

Conf. on Information Systems Security, vol. 5352, pp. 1–25,
2008.

[8] J. Kinder, F. Zuleger, nd H. Veith, “An abstract interpretation-

based framework for control flow reconstruction from bin ries”
in 10th Intl. Conf. on Verification, Model Checking, and Abstract

Interpretation, vol. 5403, pp. 214–228, 2009.

[9] A. Flexeder, M. Petter, nd H. Seidl, “Side-effect analysis of
assembly code”, in 18th Intl Conf. on Static Analysis, pp. 77–94,

2011.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to
automata theory, languages, and computation”, Prentice Hall, p.

750, 2006.

[11] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers:
principles, techniques, and tools”, (2nd Edition). Addison

Wesley, p. 1000. 2006.

[12] Intel, “Intel IA-32 Architectures Softw re Developer M nu ls.”

[Online].www.intel.com/content/www/us/en/processors/architect

ures-software-developer-manuals.html. [Accessed: 14-Feb-2013].

[13] J. J mes, P. Gl dyshev, nd Y. Zhu, “An lysis of evidence using
formal event reconstruction”, Digital Forensics and Cyber

Crimes, vol. 31, no. 1, pp. 85–98, 2010.

[14] P. Gl dyshev nd A. P tel, “Finite st te m chine ppro ch to
digital event reconstruction”, Digital Investigation, vol. 1, no. 2,

2004.

[15] F. A. Shosh , J. J mes, nd P. Gl dyshev, “Tow rds automated
forensic event reconstruction of malicious Code”, 15th Intl.

Symposium on Research in Attacks and Intrusion RAID, p. 388

2012.
[16] Microsoft, “MSDN: The Microsoft Developer Network.”

[Online]. Available: http://msdn.microsoft.com/en-US/.

[17] “ pen M lw re: community malicious code research and
analysis”. Av il le: http://www.offensivecomputing.net/.

Sample Name #IL #Actions Accuracy

%

Trojan.Zbot-1225 1031 34 89

Trojan.Zbot-385 1319 53 87

Trojan.Zbot-1023 1220 39 82

Trojan.Zbot-1652 2240 103 71

Trojan.Ransomwre-1 1632 89 79

122122

