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Abstract—Forensic analysis of a suspect program is a daily 

challenge encounters forensic analysts and law-enforcement. It 

requires determining the behavior of a suspect program found 

in a computer system subject to investigation and attempting 

to reconstruct actions that have been invoked in the system.   

In this research paper, a forensic analysis approach for suspect 

programs in an executable binary form is introduced. The 

proposed approach aims to reconstruct high level forensic 

actions and approximate action arguments from low level 

machine instructions; That is, reconstructed actions will assist 

in forensic inferences of evidence and traces caused by an 

action invocation in a system subject to forensics investigation.   

 

Keywords:Program Analysis, Data Flow Analysis, Digital 

Forensic Investigation, Action Reconstruction, Static Code 

Analysis. 

I.  INTRODUCTION  

      In digital investigation, investigators are required to 

analyze suspect executable binaries of programs found in a 

system subject to investigation. Program analysis, generally, 

can be accomplished in two-folds: ( )  dynamic program 

analysis [1-2] ( ) static program analysis [3-4].  In dynamic 

program analysis, a suspect binary is executed in a virtual or 

emulated system and actions invoked in the concrete 

execution (e.g. file created, registry modified, process 

accessed) are monitored to determine the program behavior. 

Concrete program execution of a program, however, has a 

set of  limitations [5-6]. Programs are comprised of several 

execution paths and sets of configurations, and each path 

can invoke several subsequent actions. An analysis system, 

which a program is executed, is typically a standard and pre-

configured environment that barely similar to investigated 

system. A program actions invoked in a concrete execution 

on analysis system, as a result, may by different than actions 

executed in a system subject to investigation. That is, 

forensic analysis based on concrete execution may conclude 

to invalid results. To supplement forensic investigation 

based dynamic analysis approaches, static program analysis 

is, then, introduced to the forensics investigation process.  

      Fundamentally, static program analysis approaches aim 

to approximate a behavior of a program if executed on a 

computer system. Prevalent binary analysis frameworks, 

(e.g. BAP [2], BitBlaze [7], or Jackstab [8]) proposed 

different approaches that allow automating static analysis of 

a vector of dependent machine instructions decoded from an 

executable binary. Although, these approaches allow 

analysis of tremendous security problems, they are however, 

limited if used in forensic investigation of   progr m’s 

binary. These approaches address the problems related to 

semantic analysis of low-level machine instructions and its 

side effects [9] and do not approach the analysis of a 

program actions that may change the final state of a system.         

Forensic analysis of suspect programs, naturally, concerned 

with reconstruction of high level program actions (e.g. file 

modifications or registry manipulation) that change the final 

state of a system and cause traces that assists the process of 

evidence inferences. In previously mentioned static analysis 

frameworks, instructions that handle action invocation and 

termination, such as, call and ret are treated as basic 

assignment and jump operations, and arguments of an action 

in the procedure stack are not forensically considered in the 

analysis. Thus, forensic analysis based on these approaches 

may conclude the possibility of certain action invocation, 

however, the detailed specifications of the action arguments 

remain unspecified; i.e. a human investigator may infer, in 

static code analysis, the possibility of file creation based on 

existence of a file create action call instruction, however, 

file specification cannot be determined due to the lack of 

action arguments analysis in the procedure block stack.        

      In this research, an action reconstruction approach is 

proposed to determine invoked actions and compute an 

approximation of action arguments in a procedure block. In 

the proposed approach, an enhancement to interprocedural 

analysis of a procedure block is proposed through modeling 

the local stack frame. Modeled stack frame is, then, 

augmented with a data flow analysis of action arguments to 

allow approximation of argument passed to an action. 

Determined actions and approximated action arguments 

values will, subsequently, allow in inferences of program 

traces and evidence and will assist in forensic reconstruction 

of a program behavior in the system subject to investigation.  

      The remainder of the paper is organized as follows:  In 

section Two, an intermediate language describing the 

semantic of a program machine code is proposed; then, an 

interprocedural analysis of program blocks and data flow 

analysis of action and arguments are presented. In section 

Three, the system implementation and preliminary 

experimental results are described. Finally, section Four, 

concludes the presented approach and proposes the future 

research work. 
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Figure 1: A syntax of IL to Abstract a Program Sematic 

II. FORENSIC ANALYSIS OF A PROGRAM 

A. A Program Formalization 

      To allow analysis of a progr m’s  in ry execut  le  , a 

simplified Intermediate Language (IL) [10-11] is proposed 

to express the concrete semantic of low level instructions 

belonging to a program subject to investigation. In proposed 

IL, a program is a set of statements    that represent 

different operations over expression   or a variable  , i.e. 

variable or memory assignment, conditional assessment of 

an expression or jump to a specific program point  . The 

syntax of proposed IL is presented in Figure 1.  A semantic 

of statement    in a program is modeled as a program state 

at program point   . A transition function   model the 

changes in a program state  〈  〉   〈  〉
  , and updates 

the program counter           . The operational semantic 

of presented IL is shown in Figure 2. It defines 

unambiguously the concrete execution of an investigated 

program abstracted in IL.  In IL operational semantic, each 

statement is substituted with one or more production rules 

that are depicted in Figure 2. All production rules are in the 

following form:    

 

                              
                    

                      
 

 

Each production rule performs analysis to a statement state 

before and after the concrete execution of the statement 

sem ntics. The “ efore”  n lysis is denoted  s “St te Entry 

An lysis”, where  n ev lu tion of v ri  le’s or expression’s 

state that may be effected by a statement computation in the 

context ( ) is performed.  While “After”  n lysis, denoted 

 s “St te Post Comput tion”, which valuate a variable or an 

expression based on a statement semantic in the context of 

statement state ( ). Evaluation and valuation of a variable 

or expression are accomplished through proposed     ̂ 

and    ̂  operators, respectively.  

       A Program, as well, is comprised of a set of procedure 

blocks     {           }, such that, a procedure    is 

       
Figure 2: Concrete Operational Semantic of IL 

 

comprised of a set of statements       .  A control flow 

graph (CFG) of a given    can be constructed using a 

standard CFG construction technique such as presented in 

[3]. Note that, a program based on previously illustrated 

notation can be viewed as CFG of procedure blocks; where 

each block    is a node in the graph, and have entry point 

        and exit point           denoting the graph vertices. 

The semantic of a state transition to a procedure   , 

additionally to updating the program counter, allocates a 

memory region to the local stack frame for local variables in 

   and other conventional operations such as, caller and 

callee saving registers [12]. Thus, in order to reason a 

behavior of actions invoked in   , a simplified modeling of 

a    local stack frame is proposed.  

       A local stack frame   of a procedure at determined 

program point is formalized as a flat lattice 〈 ⟦  ⟧
 
  〉. 

   ⟦  ⟧
 denotes an empty stack frame and   

 ⟦ 
 
⟧
 
denotes the top of a stack. The size of a  ⟦  ⟧

  is, 

basically, computed based on statements    ⟦  ⟧
 

that 

semantically affect    Consequently, a function ƒ is said to 

increment or decrement  ⟦  ⟧
  if at any program point 

   in     , there is a statement    that semantically 

affects  ⟦  ⟧
  and ƒ is define as, ƒ  〈 ⟦  ⟧   

 〉   ⟦  ⟧
   

where,  ⟦  ⟧ is a set of data flow analysis computations 

over   , and it will be explained later. 

  

B. Procedure Block Analysis 

As explained, a procedure block    is comprised of a set 

of statements      in which,        allows in deducing   

and         deducing   in  ⟦ 
 
⟧
 
. Since a single    may have 

several execution paths based on its CFG, analysis of 

actions invoked in    required, primarily, identifying 

<Statement   > ::= < expression > 

 |<variable> ::= < expression > 

 |if < expression >: <statement> 

else <statement> 

 |<jump>: < statement > 

 

<Expression   > ::= <variable>   

 |<assignment > 

 |<test> <expression> 

 |<valuation>  <expression> 

 |<unary-expression> 

 |<binary-expression> 

 | <value> 

 

 

  
    ̂    ( )

   ̂   ( )  ⟦     ̂   ( )⟧     (    )  (     )  
 

<Assignment    >: 

 

  
    ̂    ( )

   ̂    ⟦     ̂   ( )⟧      (  )     (    )  (      )   
 

<Conditional Expression>: 

 

   
    ̂    ( )

   (    )  (      )  
 

<Jump>:  

 

  
Temp   

   ⟦ Compute    ( ) ⟧   
 

    ̂  Operator: 

 

  
Temp     ⟦     ̂   ( )⟧ 

          
 

   ̂ Operator:  
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possible paths that hold an action.  As a preliminary 

analysis, we formulate an execution path in CFG⟦  ⟧
  as a 

trace   that is a set of transitive statements starting at 

       and ending at        . Every trace           is 

corresponding to a concrete execution of    subject of 

analysis. Since several traces  ⟦  ⟧ can be computed, 

 ⟦  ⟧
  may have a different layouts, each corresponds to a 

particular executed trace in    . Thus, a stack frame of a 

given trace can be given as  ⟦  ⟧     ⟦  ⟧     ⟦  ⟧
 .  

      To decrease the complexity of action reconstruction 

from several traces found in several procedures, we restrict 

traces subject to analysis to those, only, hold actions (e.g. 

invokes OS system calls or services) and may change a 

system final state, if executed.  

      As a result, a forensic analysis of a procedure    is only 

accomplished to                  and its        ⟦ ⟧. 

 

C. Forensic Reconstruction of Actions  

      In digital forensics, an action is an external event to a 

system and action invocation may cause a creation or 

modification of the system objects [13-15].  Inferences 

and/or deduction of an action effect on a system objects in 

forensic investigation, required reconstruction of the action 

and associated specifications.  To reconstruct an action from 

low-level instructions, a set of statements    ⟦   ⟧
  in    

that invoke an action have to be determined and action 

arguments have to be computed or approximated.   

    To determine a trace hold a certain action, we defined a 

set of possible actions that may be invoked by a program 

binary and its default arguments as stated in the operating 

system specification [16]. The possible actions set   is 

defined as 2-tuple of action    and arguments 〈           〉, 
where,    {(   〈           〉)    (   〈           〉)}  
For every trace         , if        ⟦   ⟧

  invokes an 

action      ;   is, then, labeled as          and   at    is 

labeled for further analysis.  

      As shown in figure 3, a code portion of a trace from a 

procedure block of a malicious program invoke actions at 

program points 54 and 7C. Action at 54 accesses a file in 

the system, while action in 7C creates a persistent service in 

the system which leaves a trace that may assist a forensic 

investigation. Determining an action may invoke at a certain 

procedure block in a concrete execution, however, may not 

completely assist an inference of forensic evidence unless 

the arguments to the action are specified, as well. For 

example, action at program point 7C can assist in inference 

of system service creation, however, service specification 

(e.g. name, desired access, path to a service binary image) 

still unspecified. The service name of action at 7C is added 

to  ⟦  ⟧
   at    , however, the value of a register variable 

eax (an action argument register) has been defined through 

several computations prior to stack decrementing at 71.  To 

compute or approximate action arguments, a data flow 

analysis of arguments in  ⟦  ⟧
 is proposed. 

 
Figure 3: A Portion of a Trace Code from a Malicious Program 

 

A standard data flow analysis technique denoted as variable 

assignment definition [3] is employed to determine a set of 

statements   ⟦   ⟧
  that previously, assigned a value to an 

argument register used in a subsequent action invocation. 

Let    {       }  denote a set of register variables 

which   ⟦   ⟧
  operates on. Let    {〈    〉   〈    

 〉} a 

Poset of 2-tuple,    of    in   where   ⟦   ⟧
  has found to 

valuate   .  

An assignment analysis of variables used in subsequent 

invocation of an action can be defined as a backward trace 

function ƒ-  over   ⟦   ⟧
  to trace values assigned to a 

variable of interest from         
  to        ⟦   ⟧

 , such that: 

 

   ƒ-          ⟦   ⟧
            ⟦   ⟧

  

 

The set   resulted is, then, mapped to an argument of action 

at  ⟦  ⟧, as follow: 

 

ƒ  〈 ⟦  ⟧   
 〉   ⟦  ⟧,  

 

Finally, for every     ⟦  ⟧, a concrete evaluation using  

   ̂  and     ̂ is accomplished to compute a concrete value 

for action arguments subsequently computed though several 

statements determined in  ⟦  ⟧, as follow: 

 

     ⟦  ⟧ 
 

ƒ 〈    ̂         ̂   〉       
 

As shown in Figure 3, an argument of action specified at 7C 

is added  ⟦  ⟧
  at    . A backward trace function over 

action argument at        ⟦   ⟧
   back to        ⟦   ⟧

  is 

recursively invoked to determine     ⟦  ⟧ that assigned a 

value to variables used as arguments to action        , (i.e. 

 ⟦   ⟧   {〈      〉 〈      〉  〈      〉}). 

48: lea eax, [esp+1Ch] 

4C: push 3E8h 

51: push eax        #lpFileName 

52: push 0 

54: call ds:GetModuleFileNameA 

 

 

 

 

62: lea ecx, [esp+414h+BinaryPathName] 

66: push 0          #lpLoadOrderGroup 

68: push ecx        #lpBinaryPathName 

69: push 0          #dwErrorControl 

6B: push 2          #dwStartType 

6D: push 10h        #dwServiceType 

6F: push 2          #dwDesiredAccess 

71: push eax       #ServiceName 

7B: push esi        #hSCManager 

7C: call ds:CreateServiceA 

….. 
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 Table 1: A Sample Forensic Analysis of Malicious Programs 

 

    ̂ and    ̂  operators are, then, recursively operate over   

to compute and valuate an argument variable, i.e. eax  

defined in   set.  

III. IMPLEMENTATION AND PRELIMINARY RESULTS 

A prototype program code disassembler and analyzer is 

implemented to presented program forensics approach. 

Developed prototype automates x86 executable binary 

forensic investigation through decoding a suspect binary 

machine-code and lift it to our proposed IL. Lifted 

instructions are, then, automatically examined with the 

proposed action reconstruction and arguments computing 

algorithms, as described.  

To evaluate the proposed approach, forensics analysis is 

performed for different samples of malicious programs used 

to commit cybercrimes, such as variants of Zeus (a malware 

family for banking cybercrimes)  and other ransom malware 

program [17]. Every sample subject to investigation has 

been forensically examined in our developed prototype and 

concretely executed in managed system to evaluate the 

preciseness of reconstructed actions relative to concrete 

execution, and to determine whether all action arguments 

have been successfully computed. A sample preliminary 

result of presented approach is depicted in Table 1. As 

shown in Table 1, a several forensic actions and associated 

arguments have been, successfully, reconstructed from 

machine code, and action traces have been located in the 

system subject to investigation. The accuracy percentage 

describes the percentage of successfully reconstructed 

actions arguments values in compare to concrete execution.  

In illustrated experimental results, the proposed approach 

has successfully reconstructs a considerable set of actions 

that have invoked in a concrete execution and computed 

substantial percentage of action arguments values; however, 

a set of action arguments have not been computed, since the 

behavior of samples subject to investigation are developed 

to execute based on runtime dynamic computation and 

configuration parameters in the compromised systems.  In 

other words, several reconstructed actions in the samples are 

operated on arguments that dynamically populated in run-

time from compromised systems, and hence, to approximate 

such values, a detailed modeling of compromised system is 

required to be included in the forensic analysis process.   

    

IV. CONCLUSION 

In this research work, an automated approach to extract 

forensic actions from low-level machine code and 

approximating action arguments values based on backward 

data flow analysis algorithm is proposed. The proposed 

approach allows in inference/deduction of evidence and 

extraction of traces related to a suspect program in a system 

subject to forensics investigation.   

A prototype forensic analysis framework is, then, 

developed and evaluated using different malicious programs 

that regularly used to commit cybercrime activities.  
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Sample Name #IL #Actions Accuracy 

% 

Trojan.Zbot-1225 1031 34 89  

Trojan.Zbot-385 1319 53 87 

Trojan.Zbot-1023 1220 39 82 

Trojan.Zbot-1652 2240 103 71 

Trojan.Ransomwre-1 1632 89 79 
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