
Understanding Network Forensics Analysis in an Operational Environment

Elias Raftopoulos

ETH Zurich

Communication Systems Group

Zurich, Switzerland

rilias@tik.ee.ethz.ch

Xenofontas Dimitropoulos

ETH Zurich

Communication Systems Group

Zurich, Switzerland

fontas@tik.ee.ethz.ch

Abstract— The manual forensics investigation of security in-
cidents is an opaque process that involves the collection and cor-
relation of diverse evidence. In this work we conduct a complex
experiment to expand our understanding of forensics analysis
processes. During a period of four weeks we systematically
investigated 200 detected security incidents about compromised
hosts within a large operational network. We used data from
four commonly-used security sources, namely Snort alerts,
reconnaissance and vulnerability scanners, blacklists, and a
search engine, to manually investigate these incidents. Based on
our experiment, we first evaluate the (complementary) utility
of the four security data sources and surprisingly find that
the search engine provided useful evidence for diagnosing
many more incidents than more traditional security sources,
i.e., blacklists, reconnaissance and vulnerability reports. Based
on our validation, we then identify and make available a
list of 138 good Snort signatures, i.e., signatures that were
effective in identifying validated malware without producing
false positives. In addition, we compare the characteristics
of good and regular signatures and highlight a number of
differences. For example, we observe that good signatures check
on average 2.14 times more bytes and 2.3 times more fields than
regular signatures. Our analysis of Snort signatures is essential
not only for configuring Snort, but also for establishing best
practices and for teaching how to write new IDS signatures.

Keywords-Network forensics, IDS, Malware, Infections

I. INTRODUCTION

Security analysts are overwhelmed by massive data pro-

duced by different security sources. Investigating security

incidents is an opaque “art” that involves 1) carefully

extracting and combining evidence from the available se-

curity sources; 2) thoroughly understanding how suspected

malware operate; and 3) exploiting information about the

infrastructure and configuration of the affected network. In

this arena, security analysts are restricted to using slow

manual and often ad-hoc forensics analysis processes.

Towards understanding and improving forensics analysis

processes, in this work we conduct a complex experiment

in which we systematically monitor the manual forensics

analysis of live suspected infections in a large production

university network that serves tens of thousands of hosts.

In particular, over a period of four weeks, we manually

investigated in coordination with the IT department of

our university 200 security incidents about compromised

hosts detected by an IDS alert correlator. The security

investigation combined data from four security sources: 1)

Snort alerts, 2) reports from four scanning and vulnerability

assessment tools, 3) five independent blacklists, and 4) a

search engine (Google).

Based on our experiment, we describe a number of lessons

we learned from the validation of security incidents. In

particular, we make three contributions. First, we describe

how to leverage four different security data sources to

remotely diagnose live infections in a large production net-

work. Second, to delineate the manual investigation process,

we evaluate the (complementary) utility of the four data

sources. Surprisingly, we find that a search engine was

one of the most useful sources in deciding if a suspicious

host was infected, providing useful evidence that led to a

positive diagnosis in 54.5% of the cases. Reconnaissance and

vulnerability reports were useful in fewer cases, but helped

diagnose more sophisticated malware, whereas blacklists

were useful only for 10.5% of the incidents. In addition,

we report which combinations of sources helped diagnose

different types of malware.

Third, we make available a list of 138 Snort signatures that

were effective in detecting validated malware without pro-

ducing false positives. We analyze the differences between

good and regular Snort signatures and find, for example, that

good signatures check on average 23.5 Bytes in 2.8 different

fields, while regular signatures check on average only 11

Bytes in 1.2 fields. In addition, we observe that good sig-

natures tend to use offsets, regular expressions, fixed packet

sizes, and specific destination ports much more often than

regular signatures. Based on these observations, we highlight

good signature characteristics useful for configuring Snort

and for establishing signature writing best practices.

The remaining of our paper is structured as follows. In

the next section we describe the data we used. Then, in Sec-

tion III we describe the investigation of four representative

malware cases. We present our findings regarding the utility

of the data sources and the effective signatures in Section IV

and V, respectively. Finally, in Sections VI and VII we

outline related work and conclude our paper.

2013 IEEE Security and Privacy Workshops

© 2013, Elias Raftopoulos. Under license to IEEE.

DOI 10.1109/SPW.2013.12

111

2013 IEEE Security and Privacy Workshops

© 2013, Elias Raftopoulos. Under license to IEEE.

DOI 10.1109/SPW.2013.12

111

2013 IEEE Security and Privacy Workshops

© 2013, Elias Raftopoulos. Under license to IEEE.

DOI 10.1109/SPW.2013.12

111

II. DATA COLLECTION

Our monitored infrastructure is the main campus network

of the Swiss Federal Institute of Technology at Zurich

(ETH Zurich). The campus is a “zoo” of diverse systems,

like critical servers, desktops, laptops, and other lab and

office devices. The traffic mix we observe is rich since

there are almost no restrictions on the software users can

install on their devices and on the services they can use.

Our monitoring period lasted for approximately four weeks

between the 1st and the 28th of April 2011, during which

we observed in total 28,665 unique active internal hosts.

We select four data sources that provide complementary

views into the security status of a host from different vantage

points covering aspects, like its traffic, the running services,

and their vulnerabilities. These sources are commonly used

for security assessment. First, we collect IDS alerts gen-

erated by an IDS, which is located between the primary

border router and the network firewall of the monitored

network. The IDS monitors all upstream and downstream

traffic and generates an alert when a malicious signature is

triggered. The IDS gives a view of malicious activities from

the gateway of the network.

To collect information related to services and applications

running on internal hosts, we perform reconnaissance and

active scanning using NIC whois querying and Nmap. After

mapping the accessible network services of a host, we

investigate for known vulnerabilities using the Nessus [9]

and OpenVas [10] vulnerability scanners. These four tools,

to which we collectively refer as reconnaissance and vulner-

ability scanners, give a more detailed view of the internal

hosts. The last two data sources help extract information

about remote hosts by leveraging publicly available data.

In particular, we use blacklists from five blacklist providers

covering different types of malicious hosts, like active at-

tackers and spammers, and we query the Google search

engine for suspected remote hosts and domains. The search

engine indexes a variety of sources, including public forums,

bulletins, and banlists, which we exploit in an automated

way to find the roles, i.e., server type, or actions of remote

hosts. The detailed description of each feature can be found

in the accompanying technical report [18].

A. IDS Alerts

The IDS deployed in our infrastructure is Snort [22],

which is commonly considered the open source IDS solution

with the largest number of registered users and the most ac-

tive community [8], [4]. Snort is configured to use signatures

from the two most widely-used publicly available rulesets,

namely the Vulnerability Research Team (VRT) ruleset and

the Emerging Threats (ET) ruleset [6]. As of April 2011 the

two rulesets have in total 37,388 distinct signatures.

We use IDS alerts in two ways. First, we apply an

effective IDS alert correlator we have introduced in our

previous work [17] to derive a small set of incidents,

which we comprehensively analyze to evaluate their validity.

Second, during the forensics analysis we manually examine

the alerts of an investigated host and extract a number of

features regarding the type and severity of the alerts, the

size and duration of an incident, and the involved services

and hosts. These features are presented to the analyst along

with additional information extracted from the other three

data sources and are used for the manual diagnosis of

incidents. In addition, in many cases the analyst manually

examined the specific signatures of Snort rules to assess their

trustworthiness.

We had to address two challenges when analyzing Snort

alerts. First, the amount of alerts is overwhelming making

the analysis very time-consuming. In total we collected 37

million alerts over a period of four weeks, the majority

of which are policy alerts that are not directly related

to security incidents of interest. Second, the alerts are

dominated by false positives, which makes it very hard to

have any certainty about the existence of a malware based

solely on a single alert. Our Snort alert correlator distills

a small number of events that exhibit a recurring multi-

stage malicious pattern involving specific types of alerts. It

first aggregates similar alerts that exhibit temporal proximity,

it then classifies each aggregate alert as Direct attack,

Compromised host, or Policy violation, and finally it infers

active infections by identifying internal hosts that exhibit a

recurring multi-stage network footprint involving alerts of

the first two classes. Applying our correlator on raw Snort

alerts results into a small number of highly suspicious events.

In particular, during the four weeks of our experiment, the

correlator distilled 200 aggregate events from 37 million raw

alerts.

B. Reconnaissance and Vulnerability Reports

In order to measure the exposure of a studied host to ex-

ternal attacks, we additionally collect host-based information

about the running services, the patch level of deployed soft-

ware, and the presence of vulnerabilities. This information

is complementary to the network behavior patterns we get

from Snort alerts, since it helps identify the threats that a

host is susceptible to.

We use a combination of network scanning and vulner-

ability assessment techniques. In particular, we first use

basic reconnaissance techniques, like IP sweeps, NIC whois

querying, and TCP/UDP port-scanning, in order to identify

if a host is reachable and exposed to external attacks. In

addition, these techniques help determine the role of host,

e.g., web, mail, or DNS server, within the infrastructure.

Secondly, we perform targeted network scanning using

Nmap in order to retrieve information regarding the TCP and

UDP network services running on suspected hosts, details

about the type and version of their operating system, and

information regarding the types of ICMP messages a host

responds to, which reveal its filtering policies and firewall

112112112

effectiveness. After having detected the accessible network

services, we investigate a host for known vulnerabilities. For

this purpose, we use two well-known vulnerability scanners,

namely Nessus [9] and OpenVas [10], in order to build a

comprehensive profile of the vulnerability status of a host.

C. Blacklists

In order to examine if an examined host within our

network frequently initiates connections to known malicious

domains, we use a set of independent blacklists. We leverage

five public blacklists [3], [11], [7], [5], [2], which are partly

labeled indicating the type of malicious activity exhibited

by a blacklisted host, e.g., bot activity, active attack, and

spamming.

We then investigate whether the remote hosts contacted

by an internal host are listed in a blacklist. If there is a

hit then we tag the investigated host with the label of the

corresponding blacklist. This method is useful to identify if

suspicious internal hosts frequently establish communication

with known malicious domains. Such communication typi-

cally occurs when a user visits malicious websites or when

a piece of malware installed on the infected host attempts to

perform unsolicited actions, e.g., redirecting to third-party

domains, updating its binary, sharing stolen confidential

data, or getting instructions from a remote controller.

D. Search Engine

Apart from using intrusion detection alerts, active scans,

and blacklists in order to characterize remote hosts exhibit-

ing frequent communication with local investigated hosts,

we also exploit security-related information residing on the

web. When a host exhibits a malicious activity it will leave

traces in different forms in publicly available sources such

as DNS lists, website access logs, proxy logs, P2P tracker

lists, forums, bulletins, banlists, and IRC lists. To retrieve

this information we query the Google search engine using as

input the IP address and the respective domain name of the

local and remote hosts. In an automated manner we parse

the output looking for a set of pre-selected tags such as

malware, spam, bot, trojan, worm, pop3, netbios, banlist,

adaware, irc, undernet, innernet, torrent. A similar approach

has also been used in [23]. These tags reveal specific actions

a host has taken, e.g., receiving instructions from a known

botnet C&C, or roles it had for extended periods of time,

e.g., operating as a mail server.

III. EVIDENCE CORRELATION STUDIES

In this section, we first describe the manual malware

validation experiment we conducted and then we outline

example evidence correlation cases for four different types

of malware.

Our experiment used Snort alerts that were pushed in

an hourly basis to an alert archival infrastructure we are

operating since 2009. We configured our alert correlator with

the default configuration parameters [17]. We restricted our

analysis to static IP addresses, which are widely-used in the

monitored network. Detected incidents about infected hosts

were annotated with information about the IP address of the

host, the involved alerts, and a timestamp. A security analyst

on a daily basis (during week days) manually investigated

the latest detected incidents. Our experiment was conducted

in cooperation with the IT department of ETH Zurich.

To expedite the manual analysis process we developed a

number of tools that took as input the IP address of an

investigated host, collected the data described in the previous

section, extracted a large number of associated features,

and displayed all the relevant information on a dashboard.

The manual analysis process was complex and very time-

consuming as it often required processing and analyzing a

huge amount of IDS alerts, checking the quality of their

signatures, collecting information about malware, and most

importantly cross-correlating all this information. We inves-

tigated in total 200 consecutive incidents over approximately

four weeks from the 1st until the 28th of April 2011. In the

following paragraphs we present representative cases of the

manual investigation performed for four different types of

malware.

Case 1: Torpig infection. Torpig is one of the most

sophisticated trojans in the wild. The typical method of

infection is Drive-by-Downloads. The victim visits a vulner-

able legitimate web site that requests Javascript code from

a malicious webserver. The code is then executed and the

trojan attaches itself to popular applications on the victim’s

system. Torpig is a typical data harvesting trojan using

both passive monitoring and active phishing techniques to

get valuable confidential data from an infected machine.

Our active scanning for Torpig-infected hosts shows that

Windows is the operating system of the host, whereas the

services HTTP, Skype, and FTP are typically open. HTTP is

the protocol used by the malware to contact the C&C servers

and also to redirect the user to malicious domains, whereas

Skype and CuteFTP are standard applications Torpig injects

itself into. Torpig periodically contacts the C&C servers to

get instructions and to update its binary triggering IDS alerts

with IDs 2002762 and 2003066. Also, frequently it will

attempt to report stolen user data using a POST command

on known malicious domains triggering alerts with IDs in

the range [2404000:2404300]. The domains we saw that

were used for the POST operations were vgnyarm.com,

rajjunj.com and Ycqgunj.com. The dominant tags produced

by our search engine profiling method were trojan and bot.

Case 2: SdBot infection. W32/SdBot is a backdoor used

by cyper-criminals to gain unauthorized access to victim

machines. It can be used to launch active attacks or to harvest

sensitive user data from an infected host. We observe that

W32/SdBot-infected hosts are typically running MS network

services such as WebDav, RPC, and LSASS. The mal-

ware exploits the MS-LSASS buffer overflow, the MS-RPC

113113113

malformed message buffer overflow, and the MS-WebDav

vulnerability to compromise a victim. W32/SdBot uses a

typical IRC communication method to contact its C&C

servers to update its configuration triggering Snort alerts

with IDs in the range [2500000:2500500]. Also, the malware

will often attempt to propagate using extensive port scanning

to detect vulnerable hosts, mostly on port 445, triggering

alerts with IDs in the range [2011088:2011089]. Finally,

the W32/SdBot backdoor will attempt to fetch additional

badware from remote web sites to install them on the local

host. The infected hosts we analyzed attempted to connect

via FTP to the domains joher.com.tw and service.incall.ru,

which are typically used to download W32/Koobface and

Trojan.FakeAV, respectively. The tags we extracted from our

search engine query results for these domains indicated that

they are involved in malware and bot related activities.

Case 3: Hotbar infection. Win32/Hotbar is the most

prominent infection detected in our infrastructure. Typically

it comes as a web-browser add-on, like the Asksearch or

Mysearch toolbar, providing seemingly legitimate function-

ality. However, in the background it tries to harvest user

activity patterns including browsing habits and application

usage. This spyware does not attempt to hide and it will often

identify itself using the User-Agent field of an HTTP request

using the string “AskTB”. Snort uses alerts with IDs in the

range [2003305:2003500] to detect this behavior. Moreover,

the spyware will regularly attempt to redirect a user to the

domains bestdealshost.biz and zangocash.biz by generating

clickable pop-ups. These domains are typically tagged by

our search engine analysis for hosting malware.

Case 4: Koobface infection. W32.Koobface is a worm

using social networking sites such as Facebook and MyS-

pace to propagate. It typically links to popular videos, in

order to convince a user to install an executable that appears

to be a necessary codec update but is in fact the Koobface

executable. After successful infection it will attempt to

propagate by sending messages to the victim’s contact list.

This is done by issuing HTTP POST requests, which are

detected by the Snort signatures with IDs 2009156, 2010335,

and 2010700. Typical landing pages used for the redirection

in order to fetch the Koobface executable are prospect-m.ru

and pari270809.com, which are tagged as suspicious by our

Google profiling method generating the tags bot and worm.

IV. COMPLEMENTARY UTILITY AND RANKING OF

SECURITY SOURCES

In this section we present our results on the complemen-

tary utility of the four security data sources for validating

different types of malware. In Table I we list the malware

variants that were identified. We classify malware into four

categories, namely backdoors, spyware, worms, and trojans,

and for each malware we indicate in the second column the

relevant category. Note that the behavior of modern malware

often combines multiple characteristics, which seriously

perplexes the process of putting real-world malware into a

taxonomy. For this reason, in few cases malware could also

be assigned to a different category.

For 30 out of the 200 analyzed incidents, our investigation

did not lead to a definite assessment even when combining

evidence from all sources. The remaining 170 validated

incidents include 85 trojans, 59 spyware, 18 backdoors, and

8 worms. The most popular malware family was AskSearch

followed by FakeAV and Simbar. In the last four columns

of Table I we identify the combination of sources that were

useful for identifying the corresponding type of malware.

In 41.5% of the cases two sources and in 14% of the

cases at least 3 sources had to be combined to have high

certainty about the diagnosis of an investigated host. The

correlation of multiple sources was particularly useful for

the diagnosis of more sophisticated malware, like Torpig,

SdBot, and Polybot. On the other hand, a single source was

useful to identify AskSearch and MySearch.

In our previous short paper [16], which complements this

work, we additionally mapped the forensics analysis process

into a decision tree, and used the results of the manual

investigation to train the C4.5 tree classifier. In this way

we encoded the knowledge we derived from the manual

assessment of security incidents presented here, to a decision

support tool, which can be a significant aid in the diagnosis

of future incidents.

Blacklists(10.5%)

Search Engine (54.5%)

Scanning
(14%)

IDS Data (85%)

All Incidents

Figure 1. Complementary utility of security data sources for the diagnosis
of 200 incidents

In Figure 1 we depict how often a source or a combination

of sources were useful for diagnosing an infection, which

illustrates the complementary utility of the four data sources.

Based on our experiments, we rank the four sources as

follows:

1) IDS alerts: IDS alerts are the most fruitful source

of information since they were the basis for our as-

sessment. In 170 out of the 200 investigated incidents,

the further manual examination of IDS alerts observed

near the time of a detected incident provided useful

evidence for validation.

114114114

Table I
PREVALENCE OF DIFFERENT MALWARE TYPES AND VARIANTS IN THE 200 INVESTIGATED INCIDENTS. THE LAST FOUR COLUMNS MARK THE DATA

SOURCES THAT PROVIDED USEFUL EVIDENCE FOR DIAGNOSIS.

Malware Type (#incidents) Variant (#incidents) IDS Logs Search Engine Blacklist Data Active Scans

Trojans(85) FakeAV(27) X X

Simbar(26) X X

Monkif(18) X X

Torpig(10) X X X X

Nervos(4) X X

Spyware(59) AskSearch(50) X

MySearch(9) X

Backdoors(18) SdBot(5) X X X X

ZBot(5) X X X

Blackenergy(4) X X X X

Parabola(2) X X X

Ramsky(2) X X

Worms(8) Koobface(6) X X

Conficker(2) X X X

2) Search Engine: The second most useful data source

in our arsenal was the output of our automated search

engine queries. In 54.5% of the cases, query results

were a valuable resource providing critical information

for the analysis. This information was in most cases

complementary to the content of IDS alerts, providing

knowledge about active C&C hosts, botnet communi-

cation channels, malware landing pages, redirections

to malicious domains, malware download pages, and

phishing forms.

3) Reconnaissance and Vulnerability Reports: On the

other hand, the information we collected by scanning

suspicious hosts helped us to reach a definite assess-

ment in approximately 14% of the cases. However,

these were the most demanding inferences involving

sophisticated malware that exhibit a very complex

behavior like Torpig or SdBot.

4) Blacklists: Finally, blacklists were the least valuable

source of security information. Their output partially

overlapped with information we already extracted

from IDS alerts or from Google. Moreover, they

contain a very large number of false positives, we

speculate due to slow responsiveness in enlisting new

malicious hosts [21].

Below we summarize the main lessons we learn from our

evaluation of the utility of different security sources:

Insight 1. No single sensor provides conclusive evidence

about an investigated incident. Relying on a single defensive

mechanism might be sufficient to detect automated threats

with deterministic and predictable activity. However, most

modern threats exhibit complex behaviors that require a

multi-vantage point security architecture for effective detec-

tion.

Insight 2. IDS sensors have been heavily criticized for

producing a large number of false positives, rendering them

unreliable if used in isolation for identifying active infec-

tions. In this work we highlight that by exploiting statistical

and temporal correlations of the alert stream, our IDS

data became very useful, since they helped identify a few

actionable cases that exhibited a high likelihood of infection.

Insight 3. Alternative security sources, such as the output

we get from the profiling method using the Google search

engine, proved to be more helpful for making an assess-

ment than traditional security sources, such as vulnerability

reports and blacklists. This highlights the importance of

endpoint profiling for domains visited by infected hosts. The

reputation and typical activity of these remote hosts provides

invaluable pieces of evidence that can drive the investigation

process. Moreover, blacklists should only be used as a

low quality indicator of domain reputation. Search engine

content seems to be more reactive and up-to-date regarding

changes in a host’s activity compared to the information

contained in blacklists.

V. WHAT A GOOD IDS SIGNATURE LOOKS LIKE?

Next, we provide a list of Snort signatures that were

found by our alert correlator useful for detecting confirmed

malware without generating false positives. These signatures

are useful for configuring the widely-used Snort IDS and for

teaching good signature writing practices. They are based on

the 170 validated incidents and are effective in detecting the

malware types listed in Table I.

Our alert correlator finds tuples of aggregated alerts that

occur frequently together. For each tuple involved in a

validated incident, we extracted the corresponding Snort

signatures. We found in total 138 Snort Signature IDs (SID)

that can be summarized into 25 aggregate signatures as

several affiliate SIDs detect small variations of the same

pattern. In Table II we provide the 138 SIDs and a short

115115115

Table II
EFFECTIVE SNORT SIGNATURES IN IDENTIFYING MALWARE INFECTIONS THE 200 INVESTIGATED INCIDENTS.

SID Signature Description

[C&C Communication] Update malicious binary instruction set.

2007668 ET TROJAN Blackenergy Bot Checkin to C&C
2010861 ET TROJAN Zeus Bot Request to CnC

2404138:2404156,2404242:2404247,2404335:2404347 ET DROP Known Bot C&C Server Traffic TCP/UDP
16693 SPYWARE-PUT Torpig bot sinkhole server DNS lookup attempt

2802912 ETPRO TROJAN Backdoor.Nervos.A Checkin to Server
2011365, 2010267 ET TROJAN Sinowal/sinonet/mebroot/Torpig infected host checkin

[Reporting] Share stolen user confidential data with controller.

2008660 ET TROJAN Torpig Infection Reporting
2011827 ET TROJAN Xilcter/Zeus related malware dropper reporting in
2009024 ET TROJAN Downadup/Conficker A or B Worm reporting
2002728 ET TROJAN Ransky or variant backdoor communication ping
2010150 ET TROJAN Koobface HTTP Request

[Egg download] Update malicious binary/ Download additional malware.

2010886 ET TROJAN BlackEnergy v2.x Plugin Download Request
2802975 ETPRO TROJAN Linezing.com Checkin
1012686 ET TROJAN SpyEye Checkin version 1.3.25 or later
2010071 ET TROJAN Hiloti/Mufanom Downloader Checkin

[Redirection] Redirect user to malicious domain.

2011912 ET CURRENT EVENTS Possible Fake AV Checkin
2003494:2003496 ET USER AGENTS AskSearch Toolbar Spyware User-Agent
2003626,2007854 ET USER AGENTS Suspicious User Agent (agent)

2009005 ET MALWARE Simbar Spyware User-Agent Detected
2406001:2406012,2406147:2406167,2406361:2406383,2406635:2406649 ET RBN Known Russian Business Network IP TCP/UDP

[Propagation] Detect and infect vulnerable hosts.

2008802 ET TROJAN Possible Downadup/Conficker-A Worm Activity
2003068 ET SCAN Potential SSH Scan OUTBOUND
2001569 ET SCAN Behavioral Unusual Port 445 traffic
2000347 ET ATTACK RESPONSE IRC - Private message on non-std port

12798:12802 SHELLCODE base64 x86 NOOP

description of the 25 aggregate signatures classified in five

classes based on the behavior they detect.

A signature is labeled as good if the following conditions

are met: it is contained in a tuple generated by our correlator,

it is used as evidence in the subsequent manual assessment

process, and the respective incident is validated by a security

expert as an infection. Note that signatures which generate

a large number of false positives and might coincidentally

get triggered during a security incident, will be in most

cases filtered out by our correlator [17]. Otherwise they

will be discarded as irrelevant during the manual assessment

process.

The malware we studied typically undergo a sequence

of stages after the initial infection. In many cases, they

attempt to contact their C&C to receive new instructions

and/or to report stolen data. Periodically they may attempt

to update their binary or to fetch additional malware, which

are installed on infected hosts. Some types of malware (e.g.

clickbots) often attempt to redirect a user to known malicious

pages by changing search engine results, by generating

pop-ups, or by redirecting HTTP requests. Finally, most

trojans and worms in our study also attempt to propagate

by scanning for vulnerabilities. Based on these, we classify

signatures in one of the following five categories (see

Table II): C&C communication, reporting, egg download,

redirection, and propagation.

In Figure 2 we show an example of a good signature that

looks for a beacon sent by a Blackenergy bot using an HTTP

POST command to its controller. The signature checks for

specific byte sequences in four different fields of the HTTP

packet. In addition, it attempts to match the identification

string sent by the infected host providing information about

the build of the malicious binary. Additional conditions

regarding the maximum packet size, the target ports, the state

of the connection, and the exact format of the identification

string are introduced to increase its specificity.

We next compare key characteristics of our good sig-

natures to the average of the signatures that are triggered

in our infrastructure, which uses the default VRT and ET

rulesets. We created two groups of signatures. A group

with the extracted 138 good signatures and its complement

group of 3,198 regular signatures that are triggered during

our experiment. In Table II we compare different features

of the two groups. We observe that good signatures are

much more complex requiring the satisfaction of multiple

conditions. A good signature attempts to match on average

23.5 Bytes in 2.8 different fields, while a regular signature

checks only 11 Bytes in 1.2 fields. In addition, 28% of the

good signatures set the offset of a sought byte sequence;

50% provide a regular expression to further specify a search

116116116

Attempt to match four
different strings

alert tcp $HOME_NET any $EXTERNAL_NET $HTTP_PORTS
(msg:” Blackenergy Bot Checkin to C&C”;
flow: established,to_server; dsize:<400;
content:“POST”; nocase; http_method;
content:“Cache-Control|3a| no-cache”; http_header;
content:“id=”; http_client_body;
content:“&build id=”; http_client_body;
pcre: “id=x.+ [0-9A-F]{8}&build id=.+/P”;
classtype:trojan-activity; sid:2007668;)

http_method;
http_header;
http_client_body;
http_client_body;

dsize:<400;
content:“POST”;
content:“Cache
content:“id=”;
content:

flow:

pcre:

$EXTERNAL_NET $HTTP_PORTSCheck if connection to
remote server is
established

Use regular expressions
to explicitly describe
a search string

Define the outbound port

Limit the packet size

Determine the section
within the packet where
the string is matched

Figure 2. Example of good Snort signature used to detect a beacon frame sent by a Blackenergy bot to its controller

Table III
COMPARISON OF GOOD AND REGULAR SNORT SIGNATURES. STATISTICS ARE COMPUTED OVER 138 GOOD AND 1398 REGULAR SIGNATURES.

Bytes Fields Byte Offset Regular Exp. Destination Packet Size
Checked Checked is Set is Set Port is Set is Set

Regular Signatures 11 1.2 8% 15% 17% 7%

Good Signatures 23.5 2.8 28% 50% 22% 15%

Increase 2.14 × 2.3 × 3.5 × 3.3 × 1.29 × 2.14 ×

pattern; 22% fix the destination port(s); and 15% give a

specific packet size. In sharp contrast, the corresponding

numbers for regular signatures are only 8%, 15%, 17%, and

7%, respectively. In the case of HTTP, we observe that good

signatures tend to define the section of an HTTP packet, e.g.,

with the Snort key-words header, method, uri, and revision,

where pattern matching is performed. Overall, we observe

that the computed statistics exhibit a consistent increase

for good signatures by a factor that takes values between

1.29 and 3.5. We conclude that good Snort signatures

tend to incorporate the entire arsenal of available features.

Complexity in the case of signature writing is a virtue. Note,

however, that this complexity typically comes at the cost of

higher processing overhead for matching signatures.

Insight 4. IDS signature writing best practices often

suggest that signatures should be kept short and simple.

The primary reason for this is performance, since signature

length and the usage of additional features handled by soft-

ware modules, such as regular expressions, have a negative

impact on the packet processing delay. Secondly, malware

will often slightly change their behavior and communication

patterns in order to evade detection. This results in a

large number of similar network footprints generated from

different flavors of the same malware. IDS signature writers

cope with this problem by generalizing existing signatures,

so that they effectively detect all different variants of a

malware family. However, our work suggests that reducing

signature complexity will also reduce its effectiveness, since

more generic signatures will often get triggered by benign

traffic. Highly specific signatures exhibit higher true positive

rate and generate in most cases a low number of alerts that

can be easily handled by a security analyst.

VI. RELATED WORK

Several studies have detected security incidents in traffic

traces from production networks, e.g., [19], [24], [14],

without providing though a systematic validation of detected

incidents. Closer to our work, Sharma et al. [20] analyzed

security incidents in a supercomputing center. The incidents

were verified based on forensics analysis that exploited

data from five security sources. The authors highlighted a

number of best practices for the perimeter security of an

organization. However, they do not provide insights about

the effectiveness of the different security sources. In our

recent short paper [16] we built a decision support tool

that correlated evidence from different security sensors to

expedite manual forensics analysis of compromised systems.

[16] focused on the automation of the security assessment

process. In contrast, in this paper we study in detail how the

manual investigation of a wide range of incidents was carried

out. In addition, we evaluate the complementary utility of

the available security sources and highlight good practices

for writing IDS signatures.

Besides, a group of studies on automating digital foren-

sics analysis have focused on discovering and correlating

evidence primarily from end hosts [1], [12], [25]. This line

of work is orthogonal to ours, since their goal is to detect

unauthorized user activity by combining the available host-

level sources. Substantial part of these studies are centered

around optimizing data representation so that evidence in-

tegrity and chain of custody is ensured [13], [15]. Our work,

on the other hand is to the best of our knowledge the first

that systematically documents network forensics analysis

practices in an operational environment.

VII. CONCLUSIONS

In this paper we conducted a complex manual inves-

tigation of 200 suspected malware in a live operational

117117117

infrastructure. We exploited four commonly-used security

data sources and a number of derived features to validate

suspected infections. Based on our experiment, we analyze

the complementary utility of the different data sources and

the characteristics of the IDS signatures that were associated

with confirmed incidents. Notably, we observe that a search

engine, which is a less well-established security data source,

was much more useful in the diagnosis of security incidents

than other more traditional security sources, namely black-

lists, active scanners, and vulnerability analysis tools.

Furthermore, we learn that a single data source is typically

not sufficient to validate an incident and that multiple

sources should be combined. In more than 10% of the

cases, no single source, but the overall behavior of a host as

seen from multiple sources helped to validate an infection.

In addition, multiple sensors are needed in 70.5% of all

cases when the easier to detect spyware are excluded. These

results highlight the importance of a holistic approach in

security assessment that combines multiple data sources. In

order to detect elaborate pieces of malware, as the ones

shown in Table I, we need to combine local information

about the exposure level and the behavioral patterns of

studied hosts with public knowledge about the maliciousness

of contacted domains. In this context future work could

also use a variety of tools to complement some of the

sensors used in our study. For example, security inspectors

(e.g. SecuniaPSI, QualysGuard), IDSs (e.g. BRO, Surricata),

and NetFlow anomaly detectors can also be used to detect

malicious activity, whereas spamtraps, blocklists and DNS-

based reputation engines can be exploited to build profiles

of contacted domains.

Finally, we extracted and made available a list of 138

Snort signatures that were triggered on hosts with validated

malware. We compare the characteristics of good and regular

signatures and report a number of interesting statistics that

provide essential guidelines for configuring Snort and for

teaching good signature writing practices. In particular, we

find that good signatures attempt to match on average 23.5

Bytes in 2.8 different fields and tend to specify regular ex-

pressions, whereas regular signatures are much less complex.

VIII. ACKNOWLEDGEMENTS

The authors wish to thank Prof. Bernhard Plattner and Dr.

Vincent Lenders for their invaluable help and fruitful dis-

cussions. Furthermore, we would also like to thank Stephan

Sheridan and Christian Hallqvist at ETH for their help in

the collection and archival of the data used in this paper.

This work was supported by the Armasuisse Secmetrics [2-

7841-09] project.

REFERENCES

[1] Andrew Case, Andrew Cristina, Lodovico Marziale,
Golden G. Richard, and Vassil Roussev. Face: Automated
digital evidence discovery and correlation. Digit. Investig.,
5:S65–S75, September 2008.

[2] Advanced automated threat analysis system. http://www.
threatexpert.com.

[3] Anonymous postmasters early warning system. http://www.
apews.org.

[4] Best IDS/IPS solution. http://www.scmagazine.com/
best-idsips-solution/article/130871/.

[5] Cooperative Network Security Community - Internet Security.
http://www.dshield.org.

[6] Emerging Threats. http://www.emergingthreats.net.

[7] Shadowserver Foundation. http://www.shadowserver.org.

[8] The Case for Open Source IDS. http://www.itsecurity.com/
features/the-case-for-open-source-ids-022607/%.

[9] The Nessus vulnerability scanner. http://www.tenable.com/
products/nessus.

[10] The Open Vulnerability Assessment System. http://www.
openvas.org.

[11] The Urlblacklist web page. http://www.urlblacklist.org.

[12] Simson L. Garfinkel. Forensic feature extraction and cross-
drive analysis. Digit. Investig., 3:71–81, September 2006.

[13] S.L. Garfinkel. Automating disk forensic processing with
sleuthkit, xml and python. In IEEE SADFE ’09.

[14] Gregor Maier, Anja Feldmann, Vern Paxson, Robin Sommer,
and Matthias Vallentin. An assessment of overt malicious
activity manifest in residential networks. In DIMVA, 2011.

[15] J. Mena. Investigative Data Mining for Security and Criminal
Detection. Butterworth-Heinemann Limited, 2003.

[16] Elias Raftopoulos and Xenofontas Dimitropoulos. Shedding
light on log correlation in network forensics analysis. In
DIMVA’12.

[17] Elias Raftopoulos and Xenofontas Dimitropoulos. Detecting,
validating and characterizing computer infections in the wild.
In ACM SIGCOMM IMC, Berlin, Germany, November 2011.

[18] Elias Raftopoulos and Xenofontas Dimitropoulos. Technical
report : Shedding light on data correlation during network
forensics analysis. Technical Report 346, 2012.

[19] Stefan Saroiu, Steven D. Gribble, and Henry M. Levy. Mea-
surement and analysis of spyware in a university environment.
In NSDI, pages 141–153, 2004.

[20] Aashish Sharma, Zbigniew Kalbarczyk, James Barlow, and
Ravishankar K. Iyer. Analysis of security data from a large
computing organization. In DSN, 2011.

[21] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Shades
of grey: On the effectiveness of reputation-based blacklists.
In MALWARE’08, pages 57–64, Fairfax, Virginia, USA.

[22] A free lightweight network intrusion detection system for
UNIX and Windows. http://www.snort.org.

[23] Ionut Trestian, Supranamaya Ranjan, Aleksandar Kuzmanovi,
and Antonio Nucci. Unconstrained endpoint profiling
(googling the internet). In ACM SIGCOMM’08, NY, USA.

[24] Ting-Fang Yen and Michael K. Reiter. Traffic aggregation for
malware detection. In Proceedings of the 5th international
conference on, DIMVA, Berlin, Heidelberg, 2008.

[25] Yuanyuan Zeng, Xin Hu, and K.G. Shin. Detection of botnets
using combined host- and network-level information. In
DSN’10, pages 291 –300.

118118118

