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Abstract—Insider threats are a major threat to many or-
ganisations. Even worse, insider attacks are usually hard to
detect, especially if an attack is based on actions that the
attacker has the right to perform. In this paper we present
a step towards detecting the risk for this kind of attacks
by invalidating policies using structural information of the
organisational model. Based on this structural information
and a description of the organisation’s policies, our approach
invalidates the policies and identifies exemplary sequences of
actions that lead to a violation of the policy in question. Based
on these examples, the organisation can identify real attack
vectors that might result in an insider attack. This information
can be used to refine access control system or policies.
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I. INTRODUCTION

Insider threats are a major threat to many organisations.
Insiders have special privileges and knowledge, which not
only enable them to perform many actions unobserved,
but also make them interesting for attackers outside an
organisation [1]–[4].

Even worse, insider attacks are usually hard to detect,
especially if an attack is based on actions that the insider
has the right to perform. In this case, finding the legal
but maliciously intended action is as hard as finding the
proverbial needle in a haystack.

A natural reaction to this kind of threat would be to try
to ensure that after an attack one has sufficient proof to
identify the attacker, and to remedy the actions of the attack.
The problem however is to decide what to log. Too much
information makes it impossible to identify important pieces
(the above mentioned haystack), but too little information
makes it unlikely that there is a needle to find.

In this paper we present a step towards detecting possible
insider attacks by invalidating policies. Invalidating policies
is not a new idea. What is new in our approach is that we
take structural information into account for guiding the inval-
idation. This structural information will usually be in form of
a model of the part of the organisation being analysed, e.g., a
system model representing the organisation’s infrastructure,
or a representation of a workflow. Based on a model of the
organisation and a description of the organisation’s policies,
our approach identifies exemplary sequences of actions that
lead to a violation of the policy in question. This approach is
inspired by model checking and its counterexample guided
abstraction refinement.

Using the exemplary sequences of actions found, the
organisation can identify real attack vectors that might result
in an insider attack. This information can be used to refine
access control systems, policies, logging, or combinations
hereof.

Both approaches presented here are based on some for-
malisation of policies. The formalisations and our results
show that logical policy formalisation can be a good starting
point to invalidate policies, and may also be taken as a
starting point for a systematic design of, e.g., access control
or policy systems.

The rest of this article is structured as follows. After dis-
cussing policies and their roles for insider threats in the next
section, we present two approaches to invalidating policies
based on structural information: the first uses system mod-
els (Section III), the second uses workflows (Section IV).
After a discussion of related work in Section V, we conclude
in Section VI.

II. POLICIES

Policies describe admissible or inadmissible behaviour in
organisations. As such they also are (if complied to) an
obvious means for regulating insider threats; at the same
time research indicates that there is an upper limit to the
number of policies that employees will comply with [5].

Since insiders will usually have good knowledge of poli-
cies and may use this knowledge combined with their respec-
tive access rights granted by those policies to circumvent
regulations, the policies are a good starting point to explore
insider attack possibilities. When we thus focus on the poli-
cies, the models of the actual workflows become a parameter
whose level of detail we use to explore to what extent a given
policy can be violated. We consider policies as restrictions
on dynamic state based system models and additionally as
logical constraints describing workflows of organisations.
Full state exploration as well as simple propositional logic
evaluation serve to invalidate these policies and thus exhibit
attacks.

The two sections Section III and Section IV currently
each use their own policy language. We are in the process
of unifying these two branches, and to investigate their
compatibility with policy languages such as XACML.
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III. SYSTEM-MODEL BASED POLICY INVALIDATION

In this section we discuss how to use structural informa-
tion from system models [6], [7] to invalidate policies. The
system models we consider are based on ExASyM [6].

As argued above, structural information can be instru-
mental in strengthening the invalidation of policies. The
system models we consider describe especially access con-
trol specifications of the organisation in question, and these
specifications can be used in the invalidation process to
identify insiders that might have performed a certain action.
It should be noted that for many actions we can not clearly
identify a certain actor as source; instead, the source of
an actions will most often only be describable by a set of
capabilities, e.g., a certain key or access rights. We plan to
explore this in future work.

A. Example

In Figure 1 we show an example for the infrastructure
of an organisation based on [6]. The infrastructure consists
of two layers, the building and the computer network, some
nodes of which are collocated, for example the computers
and the offices. Most rooms in the building are controlled
by some form of access control, the specification of which,
together with our graph-based abstraction of the model is
shown in the right hand side of Figure 1. For a more detailed
discussion of the underlying model see [6].

Assume a policy that prohibits data of a certain type, e.g.,
sales data, to leave the organisation. In the example this
would mean that the data is not allowed to reach either of
the nodes WWW or OUTSIDE.

B. Invalidating Policies based on System Models

The invalidation of policies based on the system model
proceeds by negating the policy, and then trying to establish
a series of actions that would result in a system state that
fulfills the negated policy. At the same time this system state
violates the original policy, thereby giving a counterexample
for the policy. As discussed above, the obtained counterex-
amples can be used for refining the system model and its
access control specification.

To illustrate this procedure a bit more in detail, let us
start by negating the policy: data should go to WWW or
OUTSIDE. Let us concentrate on the second case OUTSIDE.
To practically realize this state exploration, we can use
existing methods like model checking. We use a model
checker specialized for multi agent systems, MCMAS [8].
We specify the goal as the negated policy, and then let the
model checker find its way to a state that violates the policy.
In a preliminary study [9] we have shown how this can be
done for the current example (see Appendix for the MCMAS
specification). To cut a long story short, we assume a secret
file of user U . The state exploration reveals that there are
several sequences of ExASyM actions that lead to this secret
file being moved to OUTSIDE. If the user prints the secret
file, it may rest on the printer and the janitor may pick it
up because he has access rights to the server/printer room.
Since the printout can go to the waste bin there is no secrecy
restriction any more on this printout of the secret file and
the janitor can transport it to OUTSIDE.

If the goal state is WWW, similar reasoning finds out that a
process at PC1 must have sent the file, where only the user
can have started the (malicious) process. Subsequently the
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Figure 1. A simple example system and its representation as a graph in ExASyM [6], including access control annotations. The node OUTSIDE represents
the physical world outside the organisation, and the node WWW represents the Internet as reachable by, e.g., the mail server, here PC1.
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analysis finds out that the process in question was brought
in by the user from OUTSIDE or was received at PC1.
This attack is especially interesting because it resembles
a collection of attacks. The case of the malicious process
being brought in from the outside represents the road-apple
attack [10], the case of the process being received at PC1
represents the case of the user receiving some malware by
email or picking it up at a web page.

Usually model checkers are used to automatically prove
that given models fulfill specified properties by a com-
plete state exploration of the model. However, one very
useful characteristic of model checking is that it produces
counterexamples in case the examined property does not
hold. These counterexamples are sequences of state changes
representing the path leading from an initial state into a state
violating the specified property. This quality we exploit here
for invalidating policies. By negating the desired policy we
use the complete state exploration of a model checker to
produce a counterexample serving us as the key to refining
the policy. A possible refinement just based on the first attack
path to OUTSIDE could involve a refined lock mechanism at
the door to the server room that would activate time delays
on access for the janitor and user alerts as pickup reminders
when secret files are printed.

IV. WORKFLOW-BASED INVALIDATION

In this section we apply a similar idea as in the previous
section to the problem of invalidating policies that address
workflows. As before, we have a mechanism for describing
policies, and we use the additional structural information
from the workflow to guide the invalidation of the policies.

A. Example: DC Insider Attack

Some years ago, the District of Columbia (DC) was target
of an insider attack launched by one of their employees with
the help of colleagues to undergo the policy that was in place
to avoid check refund frauds [11], [12]. This employee was
known as a skillful and reliable person working with IT, and
used her position and knowledge of the real estate tax refund
policies to undergo the security perimeter and cash in bogus
check refunds.

She was also involved in setting up the scene so that
their frauds would remain undetected: since costs for a new,
integrated Tax System had already used up the planned
resources, the insider contributed to the decision to leave
out her department that handled real estate tax refunds. As
a result, she could cash in bogus real estate tax refunds for
fictitious parties, often collaborating with colleagues or their
partners. There were a few simple policy restrictions in place
that the attackers exploited to remain undetected:

• Checks below a $40000 threshold did not require a
supervisor’s approval, and

• there was no test in place to verify whether a check
had already been cashed, so checks could be cashed-in
more than once.

B. Invalidating Policies based on Workflows
We illustrate now that a simple logical formalization does

suffice to make these fairly intuitive attack policies easily
detectable. To formally describe the policy of the case study
that has been tampered with, we introduce a datatype for
checks entailing the addressed department, the recipient of
the money, and the cash sum.

check : department × recipient × sum

The parts of the policies are as follows:
• supervise : check → bool is an abstract predicate

denoting that a check refund must get the approval of
a supervisor,

• own-dept-exempt x ≡ x.department = real-estate is a
concrete predicate defining which checks are exempt
from checking because they are addressed to the real
estate tax department,

• threshold-exempt x ≡ x.sum < 40000 is a concrete
predicate encoding that checks with a sum below 40000
need not be checked.

Finally, the current policy can be expressed simply as the
following combination of these three predicates mandatory
for all cashed checks of the DC tax department.

policy x ≡ own-dpt-exempt x ∨ threshold-exempt x
∨ supervise x

To express the global policy we assume a concrete set of
“cash-ins” and then quantify the policy over all checks in
the set. The operator P(S) denotes the powerset of a set S.

cash-ins : P(check)
Policy ≡ ∀x ∈ cash-ins. policy x

C. DC Insider Attack Example Analysed
The logical expression of policies as discussed in Sec-

tion II provides a tool to invalidate them. We have to analyse
the ways how a fake check can pass the policy; to do so,
we simply assume a fake check:

fake : check

Then the following three simple properties express three
ways of invalidating the policy.

1. own-dept-exempt fake ⇒ policy fake
2. threshold-exempt fake ⇒ policy fake
3. supervise fake ⇒ policy fake

The first two invalidation properties correspond to the actual
attacks that happened in the DC case. The third one has
not taken place but represents another loophole for an
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insider attack: by conspiring with an insider that may act
as supervisor, this additional invalidation property exhibits
an additional insider threat with respect to this policy.

The analysis of the invalidation of the policy is somewhat
ad hoc. It has been shown that policies can be formalized in
First Order Logic (FOL) [13]. However, using Higher Order
Logic (HOL), we can schematize and reason on a higher
level about invalidation of policies thus rendering the above
ad hoc logical analysis as a generic tool.

Although Higher Order Logic is generally undecidable,
cutting edge tools like Isabelle [14] or Coq provide sufficient
automation to support applications like this example to a
degree of automation.

D. Detecting Multiple Cash-ins

The policy and analysis presented above lack one possible
attack, a flaw that has been exploited in the real case. Since
check cash-ins exempt from supervisor control were not
scrutinized properly, checks could be cashed in more than
once. This flaw of the actual workflow persists as a weakness
also in our logical specification. Since cash-ins of checks are
represented as sets of checks, their cash-in is not audited as
in real life in a sequence of actions (for example by adding
time stamps to cash-ins). Therefore, a double cash-in cannot
be noticed in the abstract specification.

In order to invalidate the policy, we refine it to a more con-
crete specification closer to the physical reality of workflows
in a tax department. We use sequences of check cash-ins as
a representation of the cash-flow of the tax department.

Double cash-ins can now be easily detected by auditing
the sequence of cash-ins and while checking for double
occurrences of the same check. The function count x ∈ s is
used to return the number of occurrences of x in sequence s.

cash-ins : sequence(check)
double-cash-ins ≡ ∃ c : check. count c ∈ cash-ins > 1

Concerning the automated invalidation analysis of a refined
policy, we propose action-based verification tools. A power-
ful formalism like HOL is – unlike FOL – fully capable of
modeling datatypes like sequences and even provide some
automated support like decision integrated procedures in
tools like Isabelle [14]. Appendix VII-3 contains a complete
Isabelle-formalisation of the above described invalidation
example. But, for insider attacks, we inherently concentrate
on organisational security since insiders are by definition
part of an organisation. Therefore, when scrutinizing policies
for invalidation, we typically consider workflows of organ-
isation. These are most naturally expressed as systems of
actions not as datatypes.

This final example of multiple cash-ins, illustrates nicely
that an action-based model of the real estate tax department
is more suitable for an analysis of action sequences. The
representation as sketched in the refined specification above,

is naturally amenable to an analysis in a specification for-
malism like ExASyM. As a preliminary result of this study
into modeling and analysing insider attacks using logical and
mechanized analysis techniques, we propose an integration
of purely propositional logics policy statements and action-
sequence based methodologies.

V. RELATED WORK

Popescu et al. [15] provide a policy engine for distributed
objects implemented in their system Globe. This work is
interesting from our perspective because it addresses the
gap between abstract policy specifications and their actual
implementation as a service in a distributed object system. In
the context of model driven engineering similar goals to ours
have been pursued by Mouelhi et al. [16] also regarding in
particular the relationship between specification and testing
presenting a generic security meta-model that can be used
for early consistency checks in the security policy. Breaux et
al. [17] consider semi-formal techniques for analysis and
tracing of legal requirements. Gofman et al. [18] implement
policy checking into a virtual machine mechanism.

Generally, the approach of using invalidation is reminis-
cent of the counterexample guided abstraction refinement
approach in model checking [19] commonly called CEGAR
feedback loop. This abstraction process uses an invalidation
of an abstraction of a concrete specification to gradually
approximate a faithful model checking representation. Con-
versely, we use the concrete level to invalidate abstract
specifications representing a security policy.

The work by Dimkov et al. [7] is relevant as it also uses
an invalidation procedure to derive attack scenarios.

VI. CONCLUSION

In this paper, we have presented an approach to supporting
invalidating security policies with structural information
from organisational models. These two possibilities have
been illustrated on examples: the classical janitor example
and a insider attack case study (DC real estate tax fraud).
Techniques for the automated analysis have been shown and
discussed.

One issue with our proposition for invalidating policies
for insider attacks is the need for a common framework
possibly compatible with a widely known policy language
like XACML. This should not pose major problems but
must be inlined with a series of representative case studies
to ensure that the designed common policy language will
be sufficiently expressive to cover common scenarios. The
technique of invalidation has been demonstrated to be suit-
able for case studies from insider attacks. We believe that
this particular domain profits from the invalidation technique
more than general policies since the insider attacks are
centered on breaking in from within, i.e., not violating the
usual rules.
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APPENDIX

Appendix VII-1 show the MCMAS specification for the
user, and VII-2 the specification for the janitor from [9] men-
tioned in Section III. Appendix VII-3, finally, contains the
Isabelle-experiment we conducted to support our argument
about workflow policy invalidation and refinement.

1) Specification of agent user:

Agent User

Vars:

initialposition : { hall };

-- The initial state is in the hall

-- all moves are spelled out

currentposition : { hall,pc,server };

-- The current position

-- the data is modeled flatly as a boolean flag

print_secretfile: boolean;

end Vars

Actions = { print, move, move1, move2 };

Protocol:

currentposition = pc or currentposition = server : move;

currentposition = hall : {move1,move2};

currentposition = pc : {print};

end Protocol

Evolution:

currentposition = pc if (currentposition = hall

and Action = move1);

currentposition = server if (currentposition = hall

and Action = move2);

currentposition = hall if ((currentposition=pc or

currentposition=server) and Action=move);

end Evolution

end Agent
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2) Janitor specification in MCMAS:

Agent Janitor

Vars:

initialposition : { janitor };

currentposition : { hall, server, janitor };

-- the data is modelled flatly as a boolean flags

has_secretfile: boolean;

end Vars

Actions = { pickfromwaste, move, movej, movep };

Protocol:

currentposition = janitor

or currentposition = server : {move};

currentposition = hall : {movej,movep};

end Protocol

Evolution:

currentposition=server if (currentposition=hall

and Action=movep);

currentposition=janitor if (currentposition=hall

and Action=movej);

currentposition=hall if ((currentposition=server or

currentposition=janitor) and Action=move);

has_secretfile = true if (currentposition = server

and User.Action = print);

end Evolution

end Agent

3) DC Fraud in Isabelle:

theory DCfraud

imports Main

begin

datatype department = Dept string

datatype recipient = Recp string

datatype sum = Sum nat

datatype check = Check department recipient sum

consts supervise :: check ⇒ bool

consts cash_ins :: check set

consts fake :: check

primrec get_nat_sum :: sum ⇒ nat ("#_")

where "#(Sum n) = n"

primrec get_dept :: check ⇒ department ("_.department")

where get_dept (Check d r s) = d

primrec get_recp :: "check ⇒ recipient"("_.recipient")

where get_recp (Check d r s) = r

primrec get_sum :: "check ⇒ sum" ("_.sum")

where get_sum (Check d r s) = s

definition own_dept_exempt :: check ⇒ bool where

"own_dept_exempt x ≡ x.department = Dept(’’realestate’’)"

definition treshold_exempt :: check ⇒ bool where

"treshold_exempt x ≡ ((#((x).sum)) < 40000)"

definition policy :: check ⇒ bool where

"policy x ≡ own_dept_exempt x ∨ treshold_exempt x

∨ supervise x"

lemma invalidate_one: own_dept_exempt fake =⇒ policy fake

by (simp add: policy_def)

lemma invalidate_two: treshold_exempt fake =⇒ policy fake

by (simp add: policy_def)

lemma invalidate_three: supervise fake =⇒ policy fake

by (simp add: policy_def)

definition Policy :: check set ⇒ bool where

"Policy l ≡ ∀ x ∈ l. policy x"

lemma Policy_empty: "Policy {}"

by (simp add: Policy_def)

(* Refinement for Invalidation and base for CEGAR loop *)

consts cash_ins_seq:: check list

primrec count :: [’a, ’a list] ⇒ nat where

"count a [] = 0" |

"count a (b # l) = if (a = b) then Suc(count a l)

else count a l"

definition Policy_seq :: check list ⇒ bool where

"Policy_seq l ≡ ∀ x. x mem l −→ (count x l = 1 ∧ policy x)"

lemma no_zero_count_mem: "count a l > 0 −→ a mem l"

by (induct_tac l, simp+)

lemma no_double_cash_ins_in_seq_model:

"count c l > 1 =⇒ ¬ (Policy_seq l)"

apply (simp add: Policy_seq_def)

apply (rule_tac x = c in exI)

apply (rule conjI)

apply (simp add: no_zero_count_mem)

apply simp

done

definition policy_refinement:: check list ⇒ bool where

"policy_refinement l ≡ Policy(set l) ⇒ Policy_seq l"

lemma ex_double_cash_ins_invalidation_by_refinement:

"cash_ins_seq =

[Check (Dept (’’realestate’’))(Recp ’’insider’’)(Sum 100000),

Check (Dept (’’realestate’’))(Recp ’’insider’’)(Sum 100000)]

=⇒ ¬ (policy_refinement cash_ins_seq)"

apply (unfold policy_refinement_def)

apply simp;

apply (rule conjI)

apply (erule ssubst)

apply (simp add: Policy_def policy_def own_dept_exempt_def)

apply (rule no_double_cash_ins_in_seq_model)

apply (erule ssubst)

by simp

lemma Finite_set_list: "finite s =⇒ (∃ l. set l = s)"

apply (erule finite.induct)

apply simp

apply (erule exE)

apply (rule_tac x = "a # l" in exI)

by simp

lemma hd_lem[rule_format]: "l �= [] =⇒ hd l mem l"

apply (induct_tac l)

by auto

lemma double_cash_ins_invalidation_by_refinement_gen:

"∀ s. finite s ∧ s �= {} −→
(∃ l. set (l) = s ∧ Policy s −→ ¬(policy_refinement l))"

apply (rule allI, rule impI)

apply (erule conjE)

apply (drule Finite_set_list)

apply (erule exE)

apply (rule_tac x = "hd (l) # l" in exI)

apply (rule impI)

apply (simp add: policy_refinement_def)

apply (rule_tac c = "hd l" in no_double_cash_ins_in_seq_model)

apply (simp add: no_zero_count_mem_one)

apply (drule sym)

by (simp add: hd_lem)

end
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