
Approved for Public Release, Distribution Unlimited

Use of Domain Knowledge to Detect Insider Threats in Computer Activities

William T. Young, Henry G. Goldberg, Alex Memory, James F. Sartain, Ted E. Senator

SAIC

Arlington, VA, USA

{youngwil, goldberhg, memoryac, sartainjf, senatort}@saic.com

Abstract— This paper reports the first set of results from a

comprehensive set of experiments to detect realistic insider

threat instances in a real corporate database of computer

usage activity. It focuses on the application of domain

knowledge to provide starting points for further analysis.

Domain knowledge is applied (1) to select appropriate features

for use by structural anomaly detection algorithms, (2) to

identify features indicative of activity known to be associated

with insider threat, and (3) to model known or suspected

instances of insider threat scenarios. We also introduce a visual

language for specifying anomalies across different types of

data, entities, baseline populations, and temporal ranges.

Preliminary results of our experiments on two months of live

data suggest that these methods are promising, with several

experiments providing area under the curve scores close to 1.0

and lifts ranging from x20 to x30 over random.

Keywords-anomaly detection; insider threat; experimental case

study

I. INTRODUCTION

 The goal of the Defense Advanced Research Projects

Agency’s (DARPA’s) Anomaly Detection at Multiple

Scales (ADAMS) program is to combine structural and

semantic information from a real corporate database
1
 of

monitored activity on users’ computers to detect

independently developed red team (RT) inserts of malicious

insider activities. Over the past two years, the PRODIGAL

(PROactive Detection of Insider Threats with Graph

Analysis and Learning) research team
2
 has developed 16

anomaly detection algorithms based on various models of

behavior, including vectors of activity features, temporal

sequences of events, and graph models of relationships

among users and computer resources. In addition, we

developed data extract, transform and load components and

an integration framework that enables rapid integration of

algorithms with features extracted from the data for

experimentation. It operates in a closed laboratory setting

that is dedicated to the ADAMS program. In this

environment, the real corporate database has synthetic

insider activity inserted into it by a red team led by CERT,

that bases the inserts on realistic threat scenarios [11].

1
 The database is from a large corporation whose identity

is not allowed to be disclosed publicly. All data are used

with permission in a closed facility subject to all necessary

privacy protections.
2

 The PRODIGAL research team consists of SAIC,

Georgia Tech, Oregon State University, University of

Massachusetts and Carnegie Mellon University.

This paper presents the results of the PRODIGAL team’s

efforts to detect anomalies indicative of insider threats (ITs)

based on structural and semantic features of the data. It

focuses on the application of domain knowledge to provide

starting points for further analysis and on experimental

results, rather than the details of the anomaly detection

algorithms. It also presents a new anomaly detection

language used to specify instances of anomaly detection

processes. The experimental results are analyzed according

to multiple robust metrics and are based on two months’

worth of test data from September and October of 2012. To

our knowledge, this is the first set of results from a

comprehensive set of experiments to detect realistic IT

instances in a real corporate database of computer usage

activity.

Most prior research has focused on countering malicious

insider behavior from a law enforcement or information

security perspective. References [2][3][5][6][7] contain

significant domain knowledge drawn from workshops,

surveys, and case studies of ITs. Beyond lower-level

intrusion detection, or policies and procedures to reduce

risk, there is limited previous work on detecting IT in real

databases. A comprehensive survey of IT detection methods

[9] discusses methods for modeling user behavior to detect

masquerading, profiling activities in Windows
® Microsoft Corp.

and Web environments, and methods to integrate detection

with more active approaches for entrapping malicious

actors. Graph-based analysis has been investigated

extensively to model social and information patterns in the

context of IT scenarios. Eberle et al [4] presents several

scenarios and graphical models for their detection.

Our research differs from prior work by incorporating

domain knowledge into multiple starting points for analysis

in the form of a priori indicators of threat, anomaly

detection across multiple models and data types, and high-

level pattern detection driven by known or suspected threat

scenarios. We find that this combination of semantic and

structural analysis across multiple scales, i.e., from low-

level transactions to high-level patterns of behavior, detects

instances of realistic IT scenarios – consisting of complex

combinations of activities – with high accuracy.

II. PROVIDING STARTING POINTS FOR ANALYSIS

We apply domain knowledge to develop three types of

starting points for analysis of observable computer usage

activity that suggest known or suspected ITs. The types of

starting points are indicators, anomalies, and scenarios.

Each type incorporates domain knowledge at a different

2013 IEEE Security and Privacy Workshops

© 2013, William T. Young. Under license to IEEE.

DOI 10.1109/SPW.2013.32

60

2013 IEEE Security and Privacy Workshops

© 2013, William T. Young. Under license to IEEE.

DOI 10.1109/SPW.2013.32

60

Approved for Public Release, Distribution Unlimited

level. Indicators are models of user behavior found in

computer usage observables that are known to correlate with

malicious insider actions as derived from case studies (e.g.,

increased removable media activity may be indicative of

intellectual property (IP) theft). Anomalies focus on unusual

patterns in the data (e.g., logins after hours, large numbers

of file events on network drives). Here, we draw on an

understanding of human-computer interactions and how

abnormal patterns from a malicious insider might occur in

computer usage observables within single or multiple

feature sets over different time ranges. Scenarios describe

complex patterns of malicious insider actions that span data

types (e.g., email, file access, login, and URL) and entity,

population, and temporal extents and baselines. Scenarios

we used are suggested by case studies of real insider attacks

on government and commercial systems [3][6][7]. Note that

we defined and used these scenarios without any knowledge

of the scenarios inserted by the red team.

III. USE OF DOMAIN KNOWLEDGE

A. Designing a Feature Space from Domain Knowledge

In designing models for malicious insider detection, we

first consulted with a retired operations officer from the U.S.

Intelligence Community. We did this to focus our subject-

matter expertise on the activities of the malicious insiders

themselves – recruiting, tasking,

deploying, obfuscating – with the

goal of understanding how to

detect these activities.

We model malicious insider

behavior according to goals and

stages of threat activity. We

identified three main goals: (1)

destruction of information or

systems; (2) misuse or corruption

of information or systems; or (3)

theft of information or systems.

We then categorized malicious

insider actions into five stages: (1) exploration; (2)

experimentation; (3) exploitation; (4) execution; and (5)

escape and evasion. Table 1 summarizes these activities.

These goals and stages of malicious activity can be

adapted to cover a range of possible behavior such as

malicious insiders acting alone or in groups (with complicit

and non-complicit members in those groups) that exhibit

multiple behaviors across various temporal extents (e.g.,

day, week, and month).

We then derived features from base computer usage

observables involved with the activities identified in Table

1. Table 2 lists the number of features by activity type and

gives some examples of each type. Note that the final group

is a set of ratios, which we believe provide features

normalized by the insider’s own activity levels.

B. Indicators of Malicious Activity

When activity of a particular type described above is

unusual in a way or to a degree known to correlate with

malicious insider actions, we can treat these features as a

priori indicators. An example is the File Events indicator,

which scores all user activity for all file features (28) over

the temporal extent (user day) and produces a single score

related to unusually high file access and movement. While

not all such episodes are malicious, there is sufficient

evidence from case studies to warrant further analysis. More

than one activity type may be combined, as with File + URL

actions, which may correlate with information exfiltration

over the web.

C. Anomaly Detection Algorithms

Because PRODIGAL’s components must also find

unknown ITs, our team experimented extensively with

unsupervised anomaly detection (AD) algorithms using the

features we have discussed above, as well as relationship

and temporal sequence data derived from the base cyber

observables. These led to a number of AD algorithms. We

report on some of the most successful below.

D. Complex Scenarios of Inter-related Activities

In addition to the feature-driven experiments involving

indicators, we constructed several scenario detectors from

documented cases of malicious insider behavior [3][6][7] as

well as from our prior experience. Detectors were

TABLE 2. ACTIVITY-BASED FEATURES

Type # Examples
Email 18 Count of attachments on sent emails
File 28 Count of file events to removable

drives
Group 11 Shared printers
Login 4 Count of distinct workstations

logged onto
Printer 9 Count of print jobs submitted
URL 13 Count of Blacklist events
Ratio 28 Ratio of file events on removable

drives to all file events
Ratio of URL uploads to URL

downloads
Ratio of distinct removable drives to

URL upload/download events

TABLE 1. STAGES OF INSIDER THREAT SCENARIOS

Stage of Activity Goal: Destruction
of information or
systems

Goal: Misuse or
corruption of
information or
systems

Goal: Theft of
information or
systems

Exploration Locate weak points Locate access points Locate data

Experimentation Trial insertions Trial modifications Trial access

Exploitation N/A N/A Staging data
Execution Plant malware Modify data Exfiltrate data

Escape & Evasion Shift blame Cook books Layer movement

6161

Approved for Public Release, Distribution Unlimited

implemented in the PRODIGAL framework using available

features, indicators, and outlier detection algorithms, as well

as peer groups discovered by graph-based community

detection algorithms using graphs of shared computer

resources.

Saboteur: An insider’s use of information systems to direct

specific harm at an organization or an individual.

Saboteurs are technical, such as a system administrator,

have privileged access to systems, and revenge is

generally their motivation. They set up their attack

before termination and execute the attack after leaving.

Intellectual Property (IP) Thief-Ambitious Leader: An

insider’s use of information systems to steal IP from the

organization. This category includes industrial espionage

involving insiders. IP thieves are generally scientists,

engineers or salespeople. They generally steal what they

consider to be their own work from their former or

current project and use it to start a new company or give

it to a new company or foreign organization. We present

a detailed description of detecting this scenario later in

this paper.

Intellectual Property (IP) Thief-Entitled Individual (EI): An

IP thief that steals information like the EI, but is

motivated by ambition to steal as much as possible

before leaving the organization, rather than

dissatisfaction or a dispute. To do so, he recruits other

insiders to get access to all parts of the IP being stolen.

Fraudster: An insider’s use of information systems for the

unauthorized modification, addition, or deletion of an

organization’s data (not programs or systems) for

personal gain, or theft of information that leads to an

identity crime (e.g., identity theft, credit card fraud).

Fraudsters are lower-level employees often motivated by

financial need – hardship, greed, etc. They sometimes

are recruited by outsiders in collusion with other

insiders.

Careless User: The insider is not intentionally malicious

but, through blatant disregard of corporate policies

concerning information systems systems, exposes the

group to a comparable level of risk (i.e., compromising

systems and data) similar to the Saboteur scenario.

Rager: The insider has outbursts of strong, vociferous,

abusive, and threatening language in

email/Webmail/instant messages (IM) repeatedly toward

other insiders or against the organization in general .

These outbursts coincide with anomalies in

other data types, e.g., Logons, URL,

indicating a potential fundamental change

in behavior.

IV. ANOMALY DETECTION LANGUAGE

Specifying the analytics and domain

knowledge for the three types of starting points

requires combining multiple methods applied

to different baseline and peer group

populations over distinct time periods. For

example, we may want to detect users (or collaborating

groups of users) whose daily behavior over a recent month

differs from their daily behavior over a previous six-month

period with respect to themselves or to their peers in the

same work group or job role. Traditional data flow diagrams

cannot express these designs concisely, so we developed a

visual anomaly detection language that enables the

expression of such combinations of methods, data,

baselines, and detection extents. While developed for IT

detection, the language itself is domain-independent and

may be applied to other domains. The language specifies the

extent of the entities to be detected (e.g., individual users or

groups of users) combined with the temporal extent of

potential anomalies. Inputs to these expressions are

transactional records of user activity, and outputs are scores

on these user-temporal extents.

The syntax of the language is shown in Figure 1;

required arguments are in <angle brackets> and optional

arguments in [square brackets]. Records are passed along

horizontal lines from left to right. Component types are

specified by symbols. Entity and temporal extents are super-

and sub-scripts, respectively, of component type.

Anomaly detector components may be statistical

(denoted by the symbol S) or temporal (T); the latter

indicating detectors specialized for anomalies in temporal

patterns. Group detectors (G) discover communities of

entities, which can be used as baseline populations.

Classifiers (C) place input records into classes, which may

also be used as baseline populations, or for filtering or

partitioning records in general. The classes may be hard,

meaning that each record is put into exactly one class, or

mixed, in which case a record may be a member of more

than one class, possibly to varying degrees. Classifiers

might be implemented using a machine-learning method or

may be a simple filter based on a lookup on a record.

Similarly, aggregators (A) group records with some shared

characteristic and summarize their values, e.g., roll-up

emails from the same sender to a single record having the

count of emails as a new feature; aggregators derive new

features from existing ones in this way. Another way to

transform features is with a normalizer (N), e.g., rescale

real-valued features to the unit interval. Finally, if given a

baseline, records are classified and normalized with respect

to that baseline.

When sets of records are joined and contain different

Figure 1. Anomaly Detection Language Syntax

6262

Approved for Public Release, Distribution Unlimited

values for the same feature,

and and or (/\, \/) can combine

those values, e.g., implement

with a t-norm and t-conorm to

combine unit-interval values.

Evidence combiners (E) also

combine values but are more

general than /\ and \/. And,

when no combinations are

necessary, union and

intersection () perform the

expected operations on input

records.

If a baseline is provided, a

baseline type specifies how

the baseline is used by the

component and is indicated by

a symbol inside a small circle

to the left of the component to

which the baseline input

connects. With a cross-

sectional baseline (C), entity

extents are compared to others

within the same temporal

extent. In contrast, with a

longitudinal baseline (L) each entity will be handled

individually, and different temporal extents for that entity

are compared to one another. A simultaneous baseline (S)

combines the first two and compares each input extent to all

baseline extents. If a baseline or input time period is not

specified, this means that the two cover all available time

periods.

Whenever a component may output more than one

output class of records, e.g., a binary classifier has (+) and

(−) output classes, they should be placed to the right of the

component inside circles connected to output lines, unless

only one class of output is needed and that class is clear

from context, in which case the output class can be omitted.

Weights are scalars in the unit interval used to transform

features – usually scores – and are drawn as the letter w

inside a rectangle. The type of weighting should be put in a

description above the rectangle. Finally, the output of the

system is drawn as the letter “O” inside a circle.

In Section V.C.1, we use this language to describe an

example scenario in detail.

At present, we manually translate detection

specifications into workflow descriptions that are submitted

to a flow controller that automatically orchestrates services

that execute the algorithms in the specification against the

specified data. We are currently working to automate the

manual translation step and develop an interactive builder

interface for detection specification.

V. EXPERIMENTS

Experiments in the PRODIGAL Framework have been

aimed at exploring the space of potential starting points for

IT analysis. Given a stable, realistic background of several

months of computer observables over a population of 5500

full-time users and ground truth consisting of inserted red

team target activities, we ran a wide variety of indicator

detectors, anomaly detection algorithms, and scenarios. We

applied several performance metrics to try to understand the

potential effectiveness of each detector or detection method,

as well as of the whole suite, for IT detection. The following

sections discuss our findings.

A. Test Data

Experiments featured data collected using an instance of

SureView
® (Raytheon Oakley Systems, Inc.)

 [10] in an organization that

consisted of approximately 5,500 users. All user

identification (ID) and personal information were

anonymized and hashed to a unique user ID number for each

user. Only computer-based user activity was visible and all

activities were related to the hashed user IDs. Test data

included login, file, printer, browsing, IM, process, and email

events involving these users. On average, users had

approximately 1000 actions per day with totals varying by

data type.

To provide ground truth in the test data, an external,

independent red team inserted insider activity based on

several threat scenarios into the test data. For the

experiments discussed in this paper, the principal red team

scenario consisted of three insiders who colluded over IM

and corporate email to steal IP and form a new company.

The first insider entices the other two to find sensitive

technical information (e.g., files) and copy that information

to removable media for exfiltration outside the network. The

red team ran two variants of this scenario over consecutive,

Figure 2. IP Thief – Ambitious Leader Scenario Diagram

6363

Approved for Public Release, Distribution Unlimited

two-months’ worth of test data, inserting a total of six

instances. [11]

B. Metrics

We utilize several metrics for this stage of our

experiments, with the following assumptions:

• Each method (indicator, AD algorithm, or scenario)

scores, and thus ranks, a number of entities (treated as

trials in a binary classification).

• Entities may be user-months (the aggregation of a user’s

activities over a month) or user-days. This is a

simplification over what the PRODIGAL framework is

capable of representing.

• The number of trials is the number of entities which were

assigned a score.

• The number of positive trials is the number which

involves, at least in part, inserted red team activities. (i.e.,

a user-day during which some red team actions were

inserted together with the user’s real actions is counted as

a positive trial.)

• Methods that score only a subset of entities (e.g., only

user-days where removable drives were employed) are

measured against that subset of trials and the subset of

positives contained within it. This is a method-centric

measurement that must then be interpreted in the context

of an overall system to determine how effective the

method’s contribution might be to the task of finding ITs.

Current metrics are the following:

• Receiver operator characteristic (ROC) curve is the well-

known display of true positive rate vs. false positive rate .

• AUC is the area under the ROC curve. A random guess

method results scores ~ 0.5. ROC and AUC show overall

performance of a method at separating the positives from

the negative trials.

• (Approximate) lift curve is the display of lift at each

positive trial X rank of that trial. Lift(k) is defined as the

ratio of observed precision of the method at rank k to the

expected precision of a random guess, or (number of

positives at or above rank k / k)/(number of

positives/number of trials). The approximate curve is

plotted just as

the ranks

where

positives are

found.

• Average lift is

the average

of the plotted

points above.

It measures

the average

workload

reduction of

an analyst

who must

“look” at all

positives and relies on the method to help him triage his

inputs.

• Number of positives at or above rank k (where k= 5, 10,

50, 100, 500 for user-month methods, and k=50, 100,

500, 1000, 5000 for user-day methods). These threshold

metrics describe how well a method can support an

analytic process with fixed bandwidth. If an analyst only

has time to review 50 cases, then it is important to have

good hits in the top 50, regardless of where the other

positives occur in the ranking.

C. Details of Results

We ran 484 experiments on two months’ of data with

inserted red team scenario instances. September had 13 red

team users with activity on 98 separate user-days and

October, 6 users over 44 user-days. Experiments were run

using the three methods for detecting starting points for

further analysis; i.e., indicators, anomalies, and scenarios.

We describe an example of each type of starting point

detector in detail along with results.

1) IP Thief – Ambitious Leader (Scenario Example):

Figure 2 uses the anomaly detection language described in

section IV to specify a system for targeting the Intellectual

Property (IP) Thief Ambitious Leader scenario, cf. [3], in

which we find a leader of a group of insiders who each steal

a few files to be inconspicuous. To counter their strategy,

we combine the file activity from the neighbors surrounding

each user – known as an egonet – in the IM communication

graph, making the leader more anomalous.

We start by filtering user-days to those with sufficient

file activity (
), then join those records with the IM

user-neighbor adjacency list and sum up the features for

each “neighbor” (

). We next add that total for each

user to the user’s own features and convert the feature totals

into ratios 1(
) that can be compared across egonets of

different sizes, e.g. number of unique files to number of all

files.

To limit the baseline population to users fitting the

profile of a leader, we keep the users
 with a high

fraction of file accesses
 fitting the manager role

according to file extension and use this set as a

simultaneous baseline to score (
) each user-day.

As an additional indicator, we count 2(
) phrases

seen in IMs between users that fit the scenario

and finally combine (
) with the anomaly scores.

Figure 3 shows the ROC curve resulting from testing

this scenario on September data. Note that a significant

subset of user-days rank very highly (one user ranks first,

while five are identified in the top 100), while another set

does so poorly as to be indistinguishable from random

choice. In fact, the scenario completely ignores 33 user-

days, since they do not fit with its assumptions. This is

exactly what we would expect from a scenario specifically

designed to identify individuals on days when they are
Figure 3. Scenario – ROC Curve

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Scenario - Ambitious Leader
ROC - Sept

AUC=0.806

6464

Approved for Public Release, Distribution Unlimited

behaving like

leaders of small

groups

exfiltrating IP.

2) File Events

Indicator

(Indicator

Example): In

the File Events

indicator

method, we are

looking for

users who

display

abnormal

behavior with

respect to files, focusing on file events related to removable

media drives and the number of distinct files that a user

accesses. Component features include the ratio of file events

on removable media to all file events and the ratio of

distinct files on removable media to distinct files overall.

Performance is also strong against the red team scenarios,

which involved file copies to removable media. One

advantage of this indicator is that it ignores user-days with

no removable drive activity. Thus, when it works at all, it

works reasonably well to focus other analytics. (See Figure

4 for the October ROC curve.) When it is not applicable, it

can be safely ignored.

3) Relational Pseudo Anomaly Detection (RPAD)

(Anomaly Detection Example): RPAD builds on the

assumption that anomalies are rare to train a binary

classifier, using the base population as negatives and an

artificially generated set of points in the feature space as

positives [1]. Extensive research into methods of feature

normalization and construction of this pseudo-anomaly set

have resulted in very high performance on our test data,

AUC of 0.979 on the October data set. Figure 5 shows the

ROC curve.

4) Repeated Impossible Discrimination Ensemble (RIDE)

(Anomaly Detection Example): RIDE takes a novel

approach of repeatedly training classifiers to distinguish

between random partitions of the data [1]. Data points that

are easily over-fit tend to be isolated anomalies. Features are

derived from monthly aggregate-activity counts. Each user’s

aggregate is compared to other users’ in the observed

population and represented by the degree of statistical

outlier-ness. This results in the best overall AUC of any

anomaly detection algorithm, as well as placing 3 of the 6

target users in the top 100. (See Figure 6.)

5) Grid-based Fast Anomaly Discovery given Duplicates

(GFADD) (Anomaly Detection Example): GFADD [8]

applies a density estimation anomaly detector to nodes in a

feature space. Nodes are judged anomalous with respect to

their neighbors in the feature space. As a result, local

anomalies in a complex organization may be detected, even

if they are globally unremarkable. This is different from

using a priori peer groups as base populations. We see from

the ROC curve (Figure 7) that the algorithm appears to rank

most red team targets, and indeed most nodes, as

indistinguishable from normal. However, the top 100 nodes

contain five red team targets, resulting in lift values in the

20-30 range. Furthermore, because the algorithm scores

most other nodes very low, it “knows” when it is confident

of its detection and so can be used effectively in a multi-

method system. This characteristic of giving a few, high-

confidence results only when the observed behavior is

detectable is valuable in a multi-method system.

D. Overall Metrics

Table 3 shows results from indicator, algorithm, and

scenario experiments run so far. AUC and Average Lift are

as described earlier. The table has been sorted by AUC.

Some methods operate over individual user-days, while

others aggregate user behavior over the entire month before

looking for anomalies. Columns labeled 5(0), 10(0), etc.,

represent counts of red team targets included in the top 5, 10,

etc. for monthly methods, and the top 50, 100, etc., for daily

methods.

All metrics are calculated with respect to the available

ground truth (red team inserts). Note how poorly the URL

 Figure 5. RPAD - ROC Curve Figure 6. RIDE - ROC Curve Figure 7. GFADD - ROC Curve

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

RPAD UP Feature Norm
ROC - Oct

AUC=0.979

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

RIDE Using Anomaly of
counts ROC - Oct

AUC=0.981

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

GFADD ROC - Sept

AUC=0.301

Figure 4. Indicator - ROC Curve

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Indicator Anomaly
Detection - File ROC - Oct

AUC=0.874

6565

Approved for Public Release, Distribution Unlimited

indicator (SAIC-7) performed. Since there are no significant

web-based activities in the inserted scenarios, we would not

expect it to score well. This points out a critical issue in

testing unsupervised methods against an unknown set of

targets – the metrics are only as perceptive as the ground

truth they employ.

E. Effectiveness of Multiple Methods

While measures of performance, such as we have

presented, are useful to determine how well particular

methods are improving, they do not fully address

contributions to the overall goal of the research – detecting

known and unknown ITs. In particular, methods which

produce the same rankings may be considered redundant,

whereas methods which rank different targets highly may

contribute to reducing misses in the overall system. To

reduce redundancy, we would like different methods which

work well under different conditions and on different data.

We have begun to measure the inter-method correlation

of rankings. As an example, although some targets were

missed by some methods in the October tests, all targets

were ranked highly by at least one method. The two

scenarios of inter-linked users each had at least one user

who scored at the 99.5 percentile level (ranks 30 and 31) by

TABLE 3. OVERALL METRICS - EXPERIMENTS ON A VARIETY OF METHODS FOR DETECTING IT ANALYSIS STARTING POINT RUN IN THE PRODIGAL FRAMEWORK

OVER 2 MONTHS’ DATA. METRICS FROM SECTION V.B. ARE BASED ON INSERTED RED TEAM ACTIVITIES.

Month Algo Detection Method 5(0) 10(0) 50(0) 100(0) 500(0) AUC AvgLift

Oct OSU-4 RIDE via unusualness of counts vs. company 0 0 1 3 6 0.981 26.18

Oct UMASS-1 RPAD up feature normalization 2 2 5 11 37 0.979 30.33

Sept OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 12 0.970 26.17

Sept UMASS-1 RPAD up feature normalization 2 2 3 11 72 0.970 17.42

Oct OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 6 0.970 15.84

Sept OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 10 0.940 7.83

Sept OSU-4 RIDE via unusualness of counts vs. company 0 0 0 2 10 0.920 8.05

Oct UMASS-1 RPAD g129dm feature normalization 0 0 1 3 29 0.914 13.70

Oct UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 0 3 20 0.909 9.17

Oct OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 2 0.906 5.32

Oct OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 0 0.900 4.99

Oct UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 0 0 5 0.895 6.10

Sept OSU-4 RIDE using Raw Counts 0 0 0 2 6 0.892 7.09

Oct OSU-4 RIDE using Raw Counts 0 0 0 0 2 0.888 4.69

Oct OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.881 4.18

Sept SAIC-6 Indicator Anomaly Detection - File 0 1 17 33 54 0.881 10.58

Sept UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 10 26 56 0.879 16.06

Oct SAIC-6 Indicator Anomaly Detection - File 0 0 2 14 31 0.874 8.42

Sept OSU-2 Cross Prediction via unusualness of counts, vs company 0 1 1 1 7 0.872 8.86

Sept UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 7 12 42 0.864 10.75

Sept UMASS-1 RPAD dp feature normalization 2 4 20 26 57 0.863 24.07

Sept SAIC-3 Scenario - IP Thief 0 0 7 16 54 0.851 9.79

Oct GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 12 0.849 6.14

Sept SAIC-1 Max(Cross & Long Outliers) 0 0 0 1 14 0.846 3.99

Oct SAIC-3 Scenario - IP Thief 0 0 0 3 15 0.839 7.34

Oct OSU-2 Cross Prediction via unusualness of counts, vs company 0 0 0 0 1 0.833 3.15

Oct SAIC-1 Max(Cross & Long Outliers) 0 0 0 0 0 0.828 3.27

Oct SAIC-8 Indicator Anomaly Detection - File vs URL 0 0 2 8 28 0.824 6.02

Oct SAIC-2 Scenario - Saboteur 0 0 0 0 15 0.810 3.07

Sept SAIC-5 Scenario - Ambitious Leader 9 12 43 46 48 0.806 34.05

Oct SAIC-5 Scenario - Ambitious Leader 6 7 12 12 15 0.789 80.20

Sept OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 1 0.787 2.20

Sept OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.780 2.16

Sept SAIC-2 Scenario - Saboteur 0 1 4 6 20 0.746 3.79

Sept SAIC-8 Indicator Anomaly Detection - File vs URL 1 2 4 9 50 0.732 6.04

Oct SAIC-4 Scenario - Fraudster 0 1 1 1 7 0.713 4.57

Oct GTRI-4 Vector Space Models 0 0 1 2 2 0.694 8.64

Sept SAIC-4 Scenario - Fraudster 0 0 0 1 10 0.693 1.62

Sept GTRI-4 Vector Space Models 0 0 1 1 2 0.618 2.61

Sept SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 3 4 8 0.530 1.26

Oct SAIC-7 Indicator Anomaly Detection - URL 0 0 0 0 0 0.507 0.93

Sept GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 3 0.502 1.00

Sept SAIC-7 Indicator Anomaly Detection - URL 0 0 0 1 5 0.477 0.91

Oct CMU-6 Grid-based Anomaly Detection given Duplicates 1 1 1 2 3 0.465 1.77

Oct SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 0 0 2 0.425 0.87

Oct OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.388 0.92

Sept CMU-6 Grid-based Anomaly Detection given Duplicates 2 5 5 5 5 0.301 2.19

Sept OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.287 0.66

6666

Approved for Public Release, Distribution Unlimited

different user-month methods. Considering these rankings

as starting points for further analysis argues strongly for

effectiveness of an overall system which can combine them.

Figure 8 shows the ranking performance of four monthly

anomaly detection algorithms on the October data set.

(There were six target users, a through f, in 5,500 total users

for the month.) Lines connect each user’s position across

algorithms. Figure 8 also shows the highest rank (as a

percentile) each user achieved in any algorithm. We note

that each scenario had at least one representative at the 99.5

percent level (positions 30 and 31) from some anomaly

detection algorithm. Subsequent analysis, based on observed

user interactions should be able to find the other participants

and uncover the joint scenario activity. Such analysis (more

costly and involved) can be done from the top-scoring

starting points.

VI. SUMMARY AND NEXT STEPS

Domain-knowledge combined with structural anomaly

detection is an effective way to triage data for IT analysis.

Key considerations include normalization of features to

reduce the effect of benign variations in activity levels; use

of the meaningful base populations in anomaly detection,

including both peer groups and linked sets of entities; and

combination of methods which may individually be limited

in scope.

Having established the effectiveness of the three

methods for detecting starting points of IT analysis, we are

ready to explore ways of combining their outputs. This will

include additional domain semantics as the role of

interpretation becomes more important in further reducing

false positives.

We will also incorporate content derived from emails

(i.e., topic and sentiment analysis) into our experiments.

Anomaly-driven experiments would look for unusual

patterns in the use of negative sentiment in words and

phrases. Topic and sentiment analysis would fit into many

of our scenario-driven experiments, and Table 4 lists

specific examples.

ACKNOWLEDGMENTS

We thank the entire PRODIGAL team for their efforts in

creating, implementing, and operating the experimental

framework and algorithms. Funding was provided by the

U.S. Army Research Office (ARO) and Defense Advanced

Research Projects Agency (DARPA) under Contract Number

W911NF-11-C-0088. The content of the information in this

document does not necessarily reflect the position or the

policy of the Government, and no official endorsement

should be inferred. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

REFERENCES

[1] Unpublished works by David Jensen (University of Massachusetts)
and Tom Dietterich (Oregon State University).

[2] R. Brackney, R. Anderson, Understanding the Insider Threat:
Proceedings of a March 2004 Workshop. Santa Monica, CA: the

RAND Corporation. 2004.

[3] D. Cappelli, A. Moore, R. Trzeciak, The CERT Guide to Insider
Threats: How to Detect, Prevent, and Respond to Information

Technology Crimes. Addison-Wesley Professional. 2012.

[4] W. Eberle, L. Holder, J. Graves. "Insider Threat Detection Using a

Graph-based Approach," Journal of Applied Security Research,

Volume 6, Issue 1, January 2011

[5] J. Hollywood, D. Snyder, K. McKay, J. Boon, Out of the ordinary:

finding hidden threats by analyzing behavior. Santa Monica, CA:

the RAND Corporation. 2004.

[6] E. Kowalski, et al., “Insider threat study: illicit cyber activity in the

government sector”, United States Secret Service & the Software
Engineering Institute, Carnegie Mellon University, January 2008.

[7] M. Keeney, et al., “Insider threat study: computer system sabotage

in critical infrastructure sectors”, United States Secret Service & the
Software Engineering Institute, Carnegie Mellon University, May

2005.

[8] J-Y. Lee, U. Kang, D. Koutra, C. Faloutsos, “Fast anomaly

discovery given duplicates,” Carnegie-Mellon University, School of

Computer Science, Dec. 2012, CMU-CS-12-146.

[9] M. Salem, S. Hershkop, S. Stolfo, “A Survey of Insider Attack
Detection Research” in Insider Attack and Cyber Security: Beyond
the Hacker, Springer, 2008.

[10] “SureView Proactive Endpoint Information Protection”, Raytheon,
 February 13, 2013. Webpage:
http://www.raytheon.com/capabilities/rtnwcm/groups/iis/documents/
content/rtn_iis_sureview_datasheet.pdf

[11] J. Glasser, B. Lindauer, “Bridging the Gap: A Pragmatic Approach
to Generating Insider Threat Data” Workshop on Research for
Insider Threat, San Francisco CA, May 2013.

Figure 8. Target Users’ Ranks by 4 AD Algorithms (October data)

Highest
%-ile

a: 98.9

b: 99.5

c: 99.5

d: 97.4

e: 97.1

f: 97.6

VSM EGMM CP RIDE

31 145 216 30

65 145) 800 90

1742 148 1042 100

2365 189 1058 138

2432 286 1607 166

2926 354 1637 228

a:

c:

b:

d:

f:

e:

TABLE 4. EXAMPLES OF SEMANTIC CONTENT EXPERIMENTS

BY THREAT SCENARIO

Threat Scenario Context Derived from
Semantic Content

Saboteur; IP Thief-
Entitled Individual

 Resentment
 Detachment

IP Thief-
Ambitious Leader

 Detachment
 Influence within a group

Fraudster Personal distress
Rager Bursts of strong negative

sentiment
 Use of violent words/phrases

6767

