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Abstract— This paper reports the first set of results from a 

comprehensive set of experiments to detect realistic insider 

threat instances in a real corporate database of computer 

usage activity. It focuses on the application of domain 

knowledge to provide starting points for further analysis. 

Domain knowledge is applied (1) to select appropriate features 

for use by structural anomaly detection algorithms, (2) to 

identify features indicative of activity known to be associated 

with insider threat, and (3) to model known or suspected 

instances of insider threat scenarios. We also introduce a visual 

language for specifying anomalies across different types of 

data, entities, baseline populations, and temporal ranges. 

Preliminary results of our experiments on two months of live 

data suggest that these methods are promising, with several 

experiments providing area under the curve scores close to 1.0 

and lifts ranging from x20 to x30 over random.  

Keywords-anomaly detection; insider threat; experimental case 

study 

I. INTRODUCTION 

 The goal of the Defense Advanced Research Projects 

Agency’s (DARPA’s) Anomaly Detection at Multiple 

Scales (ADAMS) program is to combine structural and 

semantic information from a real corporate database
1
 of 

monitored activity on users’ computers to detect 

independently developed red team (RT) inserts of malicious 

insider activities. Over the past two years, the PRODIGAL 

(PROactive Detection of Insider Threats with Graph 

Analysis and Learning) research team
2
 has developed 16 

anomaly detection algorithms based on various models of 

behavior, including vectors of activity features, temporal 

sequences of events, and graph models of relationships 

among users and computer resources. In addition, we 

developed data extract, transform and load components and 

an integration framework that enables rapid integration of 

algorithms with features extracted from the data for 

experimentation. It operates in a closed laboratory setting 

that is dedicated to the ADAMS program. In this 

environment, the real corporate database has synthetic 

insider activity inserted into it by a red team led by CERT, 

that bases the inserts on realistic threat scenarios [11]. 

                                                           
1
 The database is from a large corporation whose identity 

is not allowed to be disclosed publicly. All data are used 

with permission in a closed facility subject to all necessary 

privacy protections. 
2

 The PRODIGAL research team consists of SAIC, 

Georgia Tech, Oregon State University, University of 

Massachusetts and Carnegie Mellon University. 

This paper presents the results of the PRODIGAL team’s 

efforts to detect anomalies indicative of insider threats (ITs) 

based on structural and semantic features of the data. It 

focuses on the application of domain knowledge to provide 

starting points for further analysis and on experimental 

results, rather than the details of the anomaly detection 

algorithms. It also presents a new anomaly detection 

language used to specify instances of anomaly detection 

processes. The experimental results are analyzed according 

to multiple robust metrics and are based on two months’ 

worth of test data from September and October of 2012. To 

our knowledge, this is the first set of results from a 

comprehensive set of experiments to detect realistic IT 

instances in a real corporate database of computer usage 

activity.  

Most prior research has focused on countering malicious 

insider behavior from a law enforcement or information 

security perspective. References [2][3][5][6][7] contain 

significant domain knowledge drawn from workshops, 

surveys, and case studies of ITs. Beyond lower-level 

intrusion detection, or policies and procedures to reduce 

risk, there is limited previous work on detecting IT in real 

databases. A comprehensive survey of IT detection methods 

[9] discusses methods for modeling user behavior to detect 

masquerading, profiling activities in Windows
® Microsoft Corp.

 

and Web environments, and methods to integrate detection 

with more active approaches for entrapping malicious 

actors. Graph-based analysis has been investigated 

extensively to model social and information patterns in the 

context of IT scenarios. Eberle et al [4] presents several 

scenarios and graphical models for their detection. 

Our research differs from prior work by incorporating 

domain knowledge into multiple starting points for analysis 

in the form of a priori indicators of threat, anomaly 

detection across multiple models and data types, and high-

level pattern detection driven by known or suspected threat 

scenarios. We find that this combination of semantic and 

structural analysis across multiple scales, i.e., from low-

level transactions to high-level patterns of behavior, detects 

instances of realistic IT scenarios – consisting of complex 

combinations of activities – with high accuracy. 

II. PROVIDING STARTING POINTS FOR ANALYSIS 

We apply domain knowledge to develop three types of 

starting points for analysis of observable computer usage 

activity that suggest known or suspected ITs. The types of 

starting points are indicators, anomalies, and scenarios. 

Each type incorporates domain knowledge at a different 
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level. Indicators are models of user behavior found in 

computer usage observables that are known to correlate with 

malicious insider actions as derived from case studies (e.g., 

increased removable media activity may be indicative of 

intellectual property (IP) theft). Anomalies focus on unusual 

patterns in the data (e.g., logins after hours, large numbers 

of file events on network drives). Here, we draw on an 

understanding of human-computer interactions and how 

abnormal patterns from a malicious insider might occur in 

computer usage observables within single or multiple 

feature sets over different time ranges. Scenarios describe 

complex patterns of malicious insider actions that span data 

types (e.g., email, file access, login, and URL) and entity, 

population, and temporal extents and baselines. Scenarios 

we used are suggested by case studies of real insider attacks 

on government and commercial systems [3][6][7]. Note that 

we defined and used these scenarios without any knowledge 

of the scenarios inserted by the red team.  

III. USE OF DOMAIN KNOWLEDGE 

A. Designing a Feature Space from Domain Knowledge 

In designing models for malicious insider detection, we 

first consulted with a retired operations officer from the U.S. 

Intelligence Community. We did this to focus our subject-

matter expertise on the activities of the malicious insiders 

themselves – recruiting, tasking, 

deploying, obfuscating – with the 

goal of understanding how to 

detect these activities.  

We model malicious insider 

behavior according to goals and 

stages of threat activity. We 

identified three main goals: (1) 

destruction of information or 

systems; (2) misuse or corruption 

of information or systems; or (3) 

theft of information or systems. 

We then categorized malicious 

insider actions into five stages: (1) exploration; (2) 

experimentation; (3) exploitation; (4) execution; and (5) 

escape and evasion. Table 1 summarizes these activities.  

These goals and stages of malicious activity can be 

adapted to cover a range of possible behavior such as 

malicious insiders acting alone or in groups (with complicit 

and non-complicit members in those groups) that exhibit 

multiple behaviors across various temporal extents (e.g., 

day, week, and month).  

We then derived features from base computer usage 

observables involved with the activities identified in Table 

1. Table 2 lists the number of features by activity type and 

gives some examples of each type. Note that the final group 

is a set of ratios, which we believe provide features 

normalized by the insider’s own activity levels. 

B. Indicators of Malicious Activity 

When activity of a particular type described above is 

unusual in a way or to a degree known to correlate with 

malicious insider actions, we can treat these features as a 

priori indicators. An example is the File Events indicator, 

which scores all user activity for all file features (28) over 

the temporal extent (user day) and produces a single score 

related to unusually high file access and movement. While 

not all such episodes are malicious, there is sufficient 

evidence from case studies to warrant further analysis. More 

than one activity type may be combined, as with File + URL 

actions, which may correlate with information exfiltration 

over the web. 

C. Anomaly Detection Algorithms 

Because PRODIGAL’s components must also find 

unknown ITs, our team experimented extensively with 

unsupervised anomaly detection (AD) algorithms using the 

features we have discussed above, as well as relationship 

and temporal sequence data derived from the base cyber 

observables. These led to a number of AD algorithms. We 

report on some of the most successful below. 

D. Complex Scenarios of Inter-related Activities 

In addition to the feature-driven experiments involving 

indicators, we constructed several scenario detectors from 

documented cases of malicious insider behavior [3][6][7]  as 

well as from our prior experience. Detectors were 

TABLE 2.  ACTIVITY-BASED FEATURES 

Type # Examples 
Email 18 Count of attachments on sent emails 
File 28 Count of file events to removable 

drives 
Group 11 Shared printers 
Login 4 Count of distinct workstations 

logged onto 
Printer 9 Count of print jobs submitted 
URL 13 Count of Blacklist events 
Ratio 28 Ratio of file events on removable 

drives to all file events 
Ratio of URL uploads to URL 

downloads  
Ratio of distinct removable drives to 

URL upload/download events 
 

TABLE 1.  STAGES OF INSIDER THREAT SCENARIOS 

Stage of Activity Goal: Destruction 
of information or 
systems 

Goal: Misuse or 
corruption of 
information or 
systems 

Goal:  Theft of 
information or 
systems 

Exploration Locate weak points Locate access points Locate data 

Experimentation Trial insertions Trial modifications Trial access 

Exploitation N/A N/A Staging data 
Execution Plant malware Modify data Exfiltrate data 

Escape & Evasion Shift blame Cook books Layer movement 
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implemented in the PRODIGAL framework using available 

features, indicators, and outlier detection algorithms, as well 

as peer groups discovered by graph-based community 

detection algorithms using graphs of shared computer 

resources.  

Saboteur: An insider’s use of information systems to direct 

specific harm at an organization or an individual.  

Saboteurs are technical, such as a system administrator, 

have privileged access to systems, and revenge is 

generally their motivation. They set up their attack 

before termination and execute the attack after leaving. 

Intellectual Property (IP) Thief-Ambitious Leader: An 

insider’s use of information systems to steal IP from the 

organization. This category includes industrial espionage 

involving insiders.  IP thieves are generally scientists, 

engineers or salespeople.  They generally steal what they 

consider to be their own work from their former or 

current project and use it to start a new company or give 

it to a new company or foreign organization.  We present 

a detailed description of detecting this scenario later in 

this paper. 

Intellectual Property (IP) Thief-Entitled Individual (EI): An 

IP thief that steals information like the EI, but is 

motivated by ambition to steal as much as possible 

before leaving the organization, rather than 

dissatisfaction or a dispute.  To do so, he recruits other 

insiders to get access to all parts of the IP being stolen.  

Fraudster: An insider’s use of information systems for the 

unauthorized modification, addition, or deletion of an 

organization’s data (not programs or systems) for 

personal gain, or theft of information that leads to an 

identity crime (e.g., identity theft, credit card fraud).  

Fraudsters are lower-level employees often motivated by 

financial need – hardship, greed, etc. They sometimes 

are recruited by outsiders in collusion with other 

insiders. 

Careless User: The insider is not intentionally malicious 

but, through blatant disregard of corporate policies 

concerning information systems systems, exposes the 

group to a comparable level of risk (i.e., compromising 

systems and data) similar to the Saboteur scenario. 

Rager: The insider has outbursts of strong, vociferous, 

abusive, and threatening language in 

email/Webmail/instant messages (IM) repeatedly toward 

other insiders or against the organization in general .  

These outbursts coincide with anomalies in 

other data types, e.g., Logons, URL, 

indicating a potential fundamental change 

in behavior. 

IV. ANOMALY DETECTION LANGUAGE 

Specifying the analytics and domain 

knowledge for the three types of starting points 

requires combining multiple methods applied 

to different baseline and peer group 

populations over distinct time periods. For 

example, we may want to detect users (or collaborating 

groups of users) whose daily behavior over a recent month 

differs from their daily behavior over a previous six-month 

period with respect to themselves or to their peers in the 

same work group or job role. Traditional data flow diagrams 

cannot express these designs concisely, so we developed a 

visual anomaly detection language that enables the 

expression of such combinations of methods, data, 

baselines, and detection extents. While developed for IT 

detection, the language itself is domain-independent and 

may be applied to other domains. The language specifies the 

extent of the entities to be detected (e.g., individual users or 

groups of users) combined with the temporal extent of 

potential anomalies. Inputs to these expressions are 

transactional records of user activity, and outputs are scores 

on these user-temporal extents.  

The syntax of the language is shown in Figure 1; 

required arguments are in <angle brackets> and optional 

arguments in [square brackets]. Records are passed along 

horizontal lines from left to right. Component types are 

specified by symbols. Entity and temporal extents are super- 

and sub-scripts, respectively, of component type. 

Anomaly detector components may be statistical 

(denoted by the symbol S) or temporal (T); the latter 

indicating detectors specialized for anomalies in temporal 

patterns. Group detectors (G) discover communities of 

entities, which can be used as baseline populations. 

Classifiers (C) place input records into classes, which may 

also be used as baseline populations, or for filtering or 

partitioning records in general. The classes may be hard, 

meaning that each record is put into exactly one class, or 

mixed, in which case a record may be a member of more 

than one class, possibly to varying degrees. Classifiers 

might be implemented using a machine-learning method or 

may be a simple filter based on a lookup on a record. 

Similarly, aggregators (A) group records with some shared 

characteristic and summarize their values, e.g., roll-up 

emails from the same sender to a single record having the 

count of emails as a new feature; aggregators derive new 

features from existing ones in this way. Another way to 

transform features is with a normalizer (N), e.g., rescale 

real-valued features to the unit interval.  Finally, if given a 

baseline, records are classified and normalized with respect 

to that baseline. 

When sets of records are joined and contain different 

 
Figure 1.  Anomaly Detection Language Syntax 
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values for the same feature, 

and and or (/\, \/) can combine 

those values, e.g., implement 

with a t-norm and t-conorm to 

combine unit-interval values. 

Evidence combiners (E) also 

combine values but are more 

general than /\ and \/. And, 

when no combinations are 

necessary, union     and 

intersection ( ) perform the 

expected operations on input 

records.  

If a baseline is provided, a 

baseline type specifies how 

the baseline is used by the 

component and is indicated by 

a symbol inside a small circle 

to the left of the component to 

which the baseline input 

connects. With a cross-

sectional baseline (C), entity 

extents are compared to others 

within the same temporal 

extent. In contrast, with a 

longitudinal baseline (L) each entity will be handled 

individually, and different temporal extents for that entity 

are compared to one another. A simultaneous baseline (S) 

combines the first two and compares each input extent to all 

baseline extents. If a baseline or input time period is not 

specified, this means that the two cover all available time 

periods. 

Whenever a component may output more than one 

output class of records, e.g., a binary classifier has (+) and 

(−) output classes, they should be placed to the right of the 

component inside circles connected to output lines, unless 

only one class of output is needed and that class is clear 

from context, in which case the output class can be omitted. 

Weights are scalars in the unit interval used to transform 

features – usually scores – and are drawn as the letter w 

inside a rectangle. The type of weighting should be put in a 

description above the rectangle. Finally, the output of the 

system is drawn as the letter “O” inside a circle.  

In Section V.C.1, we use this language to describe an 

example scenario in detail. 

At present, we manually translate detection 

specifications into workflow descriptions that are submitted 

to a flow controller that automatically orchestrates services 

that execute the algorithms in the specification against the 

specified data. We are currently working to automate the 

manual translation step and develop an interactive builder 

interface for detection specification. 

V. EXPERIMENTS 

Experiments in the PRODIGAL Framework have been 

aimed at exploring the space of potential starting points for 

IT analysis. Given a stable, realistic background of several 

months of computer observables over a population of 5500 

full-time users and ground truth consisting of inserted red 

team target activities, we ran a wide variety of indicator 

detectors, anomaly detection algorithms, and scenarios. We 

applied several performance metrics to try to understand the 

potential effectiveness of each detector or detection method, 

as well as of the whole suite, for IT detection. The following 

sections discuss our findings. 

A. Test Data 

Experiments featured data collected using an instance of 

SureView
® (Raytheon Oakley Systems, Inc.)

 [10] in an organization that 

consisted of approximately 5,500 users. All user 

identification (ID) and personal information were 

anonymized and hashed to a unique user ID number for each 

user. Only computer-based user activity was visible and all 

activities were related to the hashed user IDs. Test data 

included login, file, printer, browsing, IM, process, and email 

events involving these users.  On average, users had 

approximately 1000 actions per day with totals varying by 

data type.  

To provide ground truth in the test data, an external, 

independent red team inserted insider activity based on 

several threat scenarios into the test data. For the 

experiments discussed in this paper, the principal red team 

scenario consisted of three insiders who colluded over IM 

and corporate email to steal IP and form a new company. 

The first insider entices the other two to find sensitive 

technical information (e.g., files) and copy that information 

to removable media for exfiltration outside the network. The 

red team ran two variants of this scenario over consecutive, 

 
Figure 2.  IP Thief – Ambitious Leader Scenario Diagram 
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two-months’ worth of test data, inserting a total of six 

instances. [11] 

B. Metrics 

We utilize several metrics for this stage of our 

experiments, with the following assumptions: 

• Each method (indicator, AD algorithm, or scenario) 

scores, and thus ranks, a number of entities (treated as 

trials in a binary classification).  

• Entities may be user-months (the aggregation of a user’s 

activities over a month) or user-days. This is a 

simplification over what the PRODIGAL framework is 

capable of representing. 

• The number of trials is the number of entities which were 

assigned a score. 

• The number of positive trials is the number which 

involves, at least in part, inserted red team activities. (i.e., 

a user-day during which some red team actions were 

inserted together with the user’s real actions is counted as 

a positive trial.) 

• Methods that score only a subset of entities (e.g., only 

user-days where removable drives were employed) are 

measured against that subset of trials and the subset of 

positives contained within it. This is a method-centric 

measurement that must then be interpreted in the context 

of an overall system to determine how effective the 

method’s contribution might be to the task of finding ITs. 

Current metrics are the following: 

• Receiver operator characteristic (ROC) curve is the well-

known display of true positive rate vs. false positive rate . 

• AUC is the area under the ROC curve. A random guess 

method results scores ~ 0.5. ROC and AUC show overall 

performance of a method at separating the positives from 

the negative trials. 

• (Approximate) lift curve is the display of lift at each 

positive trial X rank of that trial. Lift(k) is defined as the 

ratio of observed precision of the method at rank k to the 

expected precision of a random guess, or (number of 

positives at or above rank k / k)/(number of 

positives/number of trials). The approximate curve is 

plotted just as 

the ranks 

where 

positives are 

found. 

• Average lift is 

the average 

of the plotted 

points above. 

It measures 

the average 

workload 

reduction of 

an analyst 

who must 

“look” at all 

positives and relies on the method to help him triage his 

inputs. 

• Number of positives at or above rank k (where k= 5, 10, 

50, 100, 500 for user-month methods, and k=50, 100, 

500, 1000, 5000 for user-day methods). These threshold 

metrics describe how well a method can support an 

analytic process with fixed bandwidth. If an analyst only 

has time to review 50 cases, then it is important to have 

good hits in the top 50, regardless of where the other 

positives occur in the ranking. 

C. Details of Results 

We ran 484 experiments on two months’ of data with 

inserted red team scenario instances. September had 13 red 

team users with activity on 98 separate user-days and 

October, 6 users over 44 user-days. Experiments were run 

using the three methods for detecting starting points for 

further analysis; i.e., indicators, anomalies, and scenarios. 

We describe an example of each type of starting point 

detector in detail along with results. 

1) IP Thief – Ambitious Leader (Scenario Example): 

Figure 2 uses the anomaly detection language described in 

section IV to specify a system for targeting the Intellectual 

Property (IP) Thief Ambitious Leader scenario, cf. [3], in 

which we find a leader of a group of insiders who each steal 

a few files to be inconspicuous. To counter their strategy, 

we combine the file activity from the neighbors surrounding 

each user – known as an egonet – in the IM communication 

graph, making the leader more anomalous. 

We start by filtering user-days to those with sufficient 

file activity (    
    ), then join those records with the IM 

user-neighbor adjacency list and sum up the features for 

each “neighbor” (    
      

). We next add that total for each 

user to the user’s own features and convert the feature totals 

into ratios 1(    
    ) that can be compared across egonets of 

different sizes, e.g. number of unique files to number of all 

files.  

To limit the baseline population to users fitting the 

profile of a leader, we keep the users      
      with a high 

fraction of file accesses      
      fitting the manager role 

according to file extension             and use this set as a 

simultaneous baseline to score (    
    ) each user-day.  

As an additional indicator, we count 2(    
    ) phrases 

seen in IMs between users that fit the scenario           

and finally combine (    
    ) with the anomaly scores. 

Figure 3 shows the ROC curve resulting from testing 

this scenario on September data. Note that a significant 

subset of user-days rank very highly (one user ranks first, 

while five are identified in the top 100), while another set 

does so poorly as to be indistinguishable from random 

choice. In fact, the scenario completely ignores 33 user-

days, since they do not fit with its assumptions. This is 

exactly what we would expect from a scenario specifically 

designed to identify individuals on days when they are  
Figure 3.  Scenario – ROC Curve  
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behaving like 

leaders of small 

groups 

exfiltrating IP.  

2) File Events 

Indicator 

(Indicator 

Example): In 

the File Events 

indicator 

method, we are 

looking for 

users who 

display 

abnormal 

behavior with 

respect to files, focusing on file events related to removable 

media drives and the number of distinct files that a user 

accesses. Component features include the ratio of file events 

on removable media to all file events and the ratio of 

distinct files on removable media to distinct files overall.  

Performance is also strong against the red team scenarios, 

which involved file copies to removable media. One 

advantage of this indicator is that it ignores user-days with 

no removable drive activity. Thus, when it works at all, it 

works reasonably well to focus other analytics. (See Figure 

4 for the October ROC curve.) When it is not applicable, it 

can be safely ignored.  

3) Relational Pseudo Anomaly Detection (RPAD) 

(Anomaly Detection Example): RPAD builds on the 

assumption that anomalies are rare to train a binary 

classifier, using the base population as negatives and an 

artificially generated set of points in the feature space as 

positives [1]. Extensive research into methods of feature 

normalization and construction of this pseudo-anomaly set 

have resulted in very high performance on our test data, 

AUC of 0.979 on the October data set. Figure 5 shows the 

ROC curve. 

4) Repeated Impossible Discrimination Ensemble (RIDE) 

(Anomaly Detection Example): RIDE takes a novel 

approach of repeatedly training classifiers to distinguish 

between random partitions of the data [1]. Data points that 

are easily over-fit tend to be isolated anomalies. Features are 

derived from monthly aggregate-activity counts. Each user’s 

aggregate is compared to other users’ in the observed 

population and represented by the degree of statistical 

outlier-ness. This results in the best overall AUC of any 

anomaly detection algorithm, as well as placing 3 of the 6 

target users in the top 100. (See Figure 6.) 

5) Grid-based Fast Anomaly Discovery given Duplicates 

(GFADD) (Anomaly Detection Example): GFADD [8] 

applies a density estimation anomaly detector to nodes in a 

feature space. Nodes are judged anomalous with respect to 

their neighbors in the feature space. As a result, local 

anomalies in a complex organization may be detected, even 

if they are globally unremarkable. This is different from 

using a priori peer groups as base populations. We see from 

the ROC curve (Figure 7) that the algorithm appears to rank 

most red team targets, and indeed most nodes, as 

indistinguishable from normal. However, the top 100 nodes 

contain five red team targets, resulting in lift values in the 

20-30 range. Furthermore, because the algorithm scores 

most other nodes very low, it “knows” when it is confident 

of its detection and so can be used effectively in a multi-

method system. This characteristic of giving a few, high-

confidence results only when the observed behavior is 

detectable is valuable in a multi-method system.  

D. Overall Metrics 

Table 3 shows results from indicator, algorithm, and 

scenario experiments run so far. AUC and Average Lift are 

as described earlier. The table has been sorted by AUC. 

Some methods operate over individual user-days, while 

others aggregate user behavior over the entire month before 

looking for anomalies. Columns labeled 5(0), 10(0), etc., 

represent counts of red team targets included in the top 5, 10, 

etc. for monthly methods, and the top 50, 100, etc., for daily 

methods.  

All metrics are calculated with respect to the available 

ground truth (red team inserts). Note how poorly the URL 

     
   Figure 5.  RPAD - ROC Curve                                   Figure 6.  RIDE - ROC Curve                                   Figure 7.  GFADD - ROC Curve 
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Figure 4.  Indicator - ROC Curve 
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indicator (SAIC-7) performed. Since there are no significant 

web-based activities in the inserted scenarios, we would not 

expect it to score well. This points out a critical issue in 

testing unsupervised methods against an unknown set of 

targets – the metrics are only as perceptive as the ground 

truth they employ. 

E. Effectiveness of Multiple Methods 

While measures of performance, such as we have 

presented, are useful to determine how well particular 

methods are improving, they do not fully address 

contributions to the overall goal of the research – detecting 

known and unknown ITs. In particular, methods which 

produce the same rankings may be considered redundant, 

whereas methods which rank different targets highly may 

contribute to reducing misses in the overall system. To 

reduce redundancy, we would like different methods which  

work well under different conditions and on different data.   

We have begun to measure the inter-method correlation 

of rankings. As an example, although some targets were 

missed by some methods in the October tests, all targets 

were ranked highly by at least one method. The two 

scenarios of inter-linked users each had at least one user 

who scored at the 99.5 percentile level (ranks 30 and 31) by 

TABLE 3.  OVERALL METRICS - EXPERIMENTS ON A VARIETY OF  METHODS FOR DETECTING IT ANALYSIS STARTING POINT RUN IN THE PRODIGAL FRAMEWORK 

OVER 2 MONTHS’ DATA.  METRICS FROM SECTION V.B. ARE BASED ON INSERTED RED TEAM ACTIVITIES. 

 

Month Algo Detection Method 5(0) 10(0) 50(0) 100(0) 500(0) AUC AvgLift

Oct OSU-4 RIDE via unusualness of counts vs. company 0 0 1 3 6 0.981 26.18

Oct UMASS-1 RPAD up feature normalization 2 2 5 11 37 0.979 30.33

Sept OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 12 0.970 26.17

Sept UMASS-1 RPAD up feature normalization 2 2 3 11 72 0.970 17.42

Oct OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 6 0.970 15.84

Sept OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 10 0.940 7.83

Sept OSU-4 RIDE via unusualness of counts vs. company 0 0 0 2 10 0.920 8.05

Oct UMASS-1 RPAD g129dm feature normalization 0 0 1 3 29 0.914 13.70

Oct UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 0 3 20 0.909 9.17

Oct OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 2 0.906 5.32

Oct OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 0 0.900 4.99

Oct UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 0 0 5 0.895 6.10

Sept OSU-4 RIDE using Raw Counts 0 0 0 2 6 0.892 7.09

Oct OSU-4 RIDE using Raw Counts 0 0 0 0 2 0.888 4.69

Oct OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.881 4.18

Sept SAIC-6 Indicator Anomaly Detection - File 0 1 17 33 54 0.881 10.58

Sept UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 10 26 56 0.879 16.06

Oct SAIC-6 Indicator Anomaly Detection - File 0 0 2 14 31 0.874 8.42

Sept OSU-2 Cross Prediction via unusualness of counts, vs company 0 1 1 1 7 0.872 8.86

Sept UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 7 12 42 0.864 10.75

Sept UMASS-1 RPAD dp feature normalization 2 4 20 26 57 0.863 24.07

Sept SAIC-3 Scenario - IP Thief 0 0 7 16 54 0.851 9.79

Oct GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 12 0.849 6.14

Sept SAIC-1 Max(Cross & Long Outliers) 0 0 0 1 14 0.846 3.99

Oct SAIC-3 Scenario - IP Thief 0 0 0 3 15 0.839 7.34

Oct OSU-2 Cross Prediction via unusualness of counts, vs company 0 0 0 0 1 0.833 3.15

Oct SAIC-1 Max(Cross & Long Outliers) 0 0 0 0 0 0.828 3.27

Oct SAIC-8 Indicator Anomaly Detection - File vs URL 0 0 2 8 28 0.824 6.02

Oct SAIC-2 Scenario - Saboteur 0 0 0 0 15 0.810 3.07

Sept SAIC-5 Scenario - Ambitious Leader 9 12 43 46 48 0.806 34.05

Oct SAIC-5 Scenario - Ambitious Leader 6 7 12 12 15 0.789 80.20

Sept OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 1 0.787 2.20

Sept OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.780 2.16

Sept SAIC-2 Scenario - Saboteur 0 1 4 6 20 0.746 3.79

Sept SAIC-8 Indicator Anomaly Detection - File vs URL 1 2 4 9 50 0.732 6.04

Oct SAIC-4 Scenario - Fraudster 0 1 1 1 7 0.713 4.57

Oct GTRI-4 Vector Space Models 0 0 1 2 2 0.694 8.64

Sept SAIC-4 Scenario - Fraudster 0 0 0 1 10 0.693 1.62

Sept GTRI-4 Vector Space Models 0 0 1 1 2 0.618 2.61

Sept SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 3 4 8 0.530 1.26

Oct SAIC-7 Indicator Anomaly Detection - URL 0 0 0 0 0 0.507 0.93

Sept GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 3 0.502 1.00

Sept SAIC-7 Indicator Anomaly Detection - URL 0 0 0 1 5 0.477 0.91

Oct CMU-6 Grid-based Anomaly Detection given Duplicates 1 1 1 2 3 0.465 1.77

Oct SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 0 0 2 0.425 0.87

Oct OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.388 0.92

Sept CMU-6 Grid-based Anomaly Detection given Duplicates 2 5 5 5 5 0.301 2.19

Sept OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.287 0.66
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different user-month methods.  Considering these rankings 

as starting points for further analysis argues strongly for 

effectiveness of an overall system which can combine them. 

Figure 8 shows the ranking performance of four monthly 

anomaly detection algorithms on the October data set. 

(There were six target users, a through f, in 5,500 total users 

for the month.) Lines connect each user’s position across 

algorithms. Figure 8 also shows the highest rank (as a 

percentile) each user achieved in any algorithm. We note 

that each scenario had at least one representative at the 99.5 

percent level (positions 30 and 31) from some anomaly 

detection algorithm. Subsequent analysis, based on observed 

user interactions should be able to find the other participants 

and uncover the joint scenario activity. Such analysis (more 

costly and involved) can be done from the top-scoring 

starting points.  

VI. SUMMARY AND NEXT STEPS 

Domain-knowledge combined with structural anomaly 

detection is an effective way to triage data for IT analysis. 

Key considerations include normalization of features to 

reduce the effect of benign variations in activity levels; use 

of the meaningful base populations in anomaly detection, 

including both peer groups and linked sets of entities; and 

combination of methods which may individually be limited 

in scope. 

Having established the effectiveness of the three 

methods for detecting starting points of IT analysis, we are 

ready to explore ways of combining their outputs. This will 

include additional domain semantics as the role of 

interpretation becomes more important in further reducing 

false positives.  

We will also incorporate content derived from emails 

(i.e., topic and sentiment analysis) into our experiments. 

Anomaly-driven experiments would look for unusual 

patterns in the use of negative sentiment in words and 

phrases. Topic and sentiment analysis would fit into many 

of our scenario-driven experiments, and Table 4 lists 

specific examples. 
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Figure 8.  Target Users’ Ranks by 4 AD Algorithms (October data) 

Highest 
%-ile

a: 98.9

b: 99.5

c: 99.5

d: 97.4

e: 97.1

f: 97.6

VSM EGMM CP RIDE

31 145 216 30

65 145) 800 90

1742 148 1042 100

2365 189 1058 138

2432 286 1607 166

2926 354 1637 228

a:

c:

b:

d:

f:

e:

TABLE 4.  EXAMPLES OF SEMANTIC CONTENT EXPERIMENTS  

BY THREAT SCENARIO 

Threat Scenario Context Derived from 
Semantic Content 

Saboteur; IP Thief-
Entitled Individual 

 Resentment 
 Detachment 

IP Thief-
Ambitious Leader 

 Detachment 
 Influence within a group 

Fraudster  Personal distress 
Rager  Bursts of strong negative 

sentiment 
 Use of violent words/phrases 
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