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Abstract—Kernel-level keyloggers, which are installed as part
of the operating system (OS) with complete control of kernel
code, data and resources, are a growing and very serious
threat to the security of current systems. Defending against
this type of malware means defending the kernel itself against
compromise and it is still an open and difficult problem. This
paper details the implementation of two classical kernel-level
keyloggers for Linux 2.6.38 and how current defense approaches
still fail to protect OSes against this type of malware. We
further present our current research directions to mitigate this
threat by employing an architecture where a guest OS and a
virtual machine layer actively collaborate to guarantee kernel
integrity. This collaborative approach allows us to better bridge
the semantic gap between the OS and architecture layers and
devise stronger and more flexible defense solutions to protect the
integrity of OS kernels.

I. INTRODUCTION

Kernel-level keyloggers are a growing and very serious
threat to the security of current systems. A keylogger is a
type of privacy-invasive malware that records keys pressed by
a user. This data is usually saved as a file or sent directly to
the network to third parties. The goal is to capture highly
sensitive information such as passwords, user IDs, social
security numbers, social media, email and gaming credentials
that can be leaked for financial gain. A keylogger can record
any stream of text and, depending on the machine being
targeted, can also be used as a tool for espionage.

There are two types of keyloggers: user-level, which oper-
ates in unprivileged mode as a user-level process, and kernel-
level (the focus of this paper), which is very dangerous as
it operates as part of the operating system (OS) kernel with
complete control of kernel code, data and resources. Defending
against kernel-level keyloggers means defending the kernel
itself against compromise, which is a difficult and open
problem. Preventing, detecting and recovering from kernel
attacks is difficult given the complexity of kernel code and the
great number and variety of its data structures. This complexity
makes it harder to determine known kernel good states usually
employed in defense approaches. Attacks in the kernel can
succeed not only by adding or changing kernel code or altering
its control flow, but also by tampering with certain key non-
control data structures and employing legitimate kernel code
to perform malicious actions [29]. Further, an attacker has
several avenues to compromise kernel integrity: vulnerabilities
in kernel code, abuse of interfaces such as /dev/kmem [6] and
malicious loadable kernel modules (LKM). The current solu-
tions involving protecting the integrity of kernel are ineffective
against attacks that do not rely on compromising existing
kernel code or data structures and are able to leverage existing
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kernel code or APIs. We argue that protecting the OS kernel
against kernel-level keyloggers is more difficult than protecting
the kernel against general rootkits due to the keylogger’s very
simple model: eavesdrop and leak keystrokes.

In this paper we discuss the implementation of two classical
kernel-level keyloggers for Linux (kernel 2.6.38) based on
[7], [1] and how they can defeat current approaches. The first
kernel keylogger, an improvement of the keylogger described
in [7] targets the terminal. In Linux, many important opera-
tions are done through the terminal, including operations that
require an administrator or root password. If a root password
is obtained, a malicious user would not have to implement any
exploits to gain root access; he/she must simply log in like any
normal user. The keylogger hijacks the receive buf function
from the tty line discipline. The second keylogger, based on
[1] attempts to be as indistinguishable from legitimate kernel
modules as possible. To this end, rather than proactively try to
trick the kernel into giving it keystrokes by modifying specific
kernel data structures or hijacking key kernel functions, it
abuses a legitimate kernel API. Specifically, the second key-
logger registers itself with the Linux keyboard notifier chain
to capture keystrokes. Abusing the keyboard notifier chain
allows it to successfully capture keystrokes without modifying
any kernel code or data whatsoever. Furthermore, we can
completely avoid violating any kernel invariants in the process.
This “hide in plain sight” approach makes this keylogger
resistant to security solutions that rely on checksums, and
those that rely on monitoring kernel control flow, hooks or
abuse of data structures.

Even though these attacks stress the vulnerability that cur-
rent OSes face when confronted with such attacks, we believe
that such threats can be mitigated. We also discuss in this paper
a research direction we have been currently pursuing to prevent
and detect kernel compromise: the employment of explicit
collaboration between a guest OS and virtual machine (VM).
By bridging the semantic gap between the architecture and
system layers more fine-grained and stronger kernel keylogger
protection mechanisms can be developed. Our contributions
are as follows: (i) we discuss the implementation, features and
limitations of two classes of kernel-level keyloggers for the
Linux kernel (version 2.6.38), (ii) we discuss the limitations
of current approaches facing these two keyloggers, and (iii)
we present our research directions to mitigate such attacks by
employing explicit collaboration between a guest OS and a
VM layer.

The rest of the paper is organized as follows: Section 2
discusses related work, the current state-of-the-art in kernel
integrity defense and the limitations of current defense ap-
proaches. Section 3 discusses the implementation of a key-
logger that works by abusing the tty line discipline, while
section 4 discusses a keylogger that “hides in plain sight” by
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leveraging an existing kernel API. Section 5 addresses our
research directions to mitigate such attacks and protect the
kernel. We conclude this paper in section 6.

II. RELATED WORK

The majority of existing keyloggers operates as a process
in user-space and is installed in a computer usually bundled
together with other types of malware like Trojan horses.
They leverage sets of user-level APIs available in most OSes
[35]. They can, for example, register themselves as keyboard
listeners or constantly pool the state of the keyboard [25].
Many works in the literature have addressed their detec-
tion. These solutions usually rely on signatures, modeling of
malware behavior based on system calls and library calls,
and correlation between sensitive input to a system and I/O
operations or memory writes in the kernel [10], [22], [26],
[8], [35], [36]. As our keyloggers operate at kernel-level we
will focus our discussion of related work on approaches that
attempt to prevent or detect a compromise in the kernel, as
any kernel-level malware will ultimately need to corrupt some
kernel code or state to succeed.

A. State-of-the-Art in Kernel Defense
There is currently a vast body of research addressing kernel

protection. Many works focusing on prevention use some
form of code attestation or policy to decide whether or not
a piece of code can be executed in kernel mode. Manitou [33]
leverages a hypervisor to ensure that only authorized code
runs in the system. It uses per-page permission bits to ensure
that any code contained in an executable page is authorized
for execution. Code is authenticated by taking cryptographic
hashes of the page content before execution. SecVisor [43]
employs a hypervisor to ensure that only user-approved code
executes in kernel mode: users supply a policy, which is
checked against all code loaded into the kernel. It virtualizes
physical memory allowing hardware protections to be set over
kernel memory. NICKLE [41] uses a memory shadowing
scheme to prevent unauthorized code from executing in kernel
mode. A trusted virtual machine monitor (VMM) maintains
a shadow copy of the main memory for a running VM and
performs kernel code authentication so that only trusted code is
copied to the shadow memory. During execution, instructions
are fetched only from the shadow memory. Code attestation
techniques [23], [42] verify a piece of code before it gets
loaded into the system. All these approaches do not protect
kernel integrity against memory injection attacks. The main
issue of having each code to be executed in kernel mode
approved by a user administrator or a system policy is that
this decision process is usually controlled by humans (a
system administrator) and people make mistakes or can be
deceived by social engineering techniques. In the lifetime of
a system many drivers or modules must be installed anyway
and these approaches burden the system administrator with
the responsibility of determining which module is malicious
or benign. Also they do not protect kernel pointers (hooks)
from being subverted to compromise kernel control flow [45].

Also, few of these prevention approaches can guarantee
some protection against non-control data attacks [19], for
instance attacks that tamper with kernel data structures by
directly injecting values into kernel memory (through vulner-
abilities or by abusing /dev/kmem). Most solutions addressing
prevention of non-control data attacks on kernel data structures
rely on policies that explicitly consider the data structures to be

protected. Given the great number and variety of them, these
policies could be incomplete and fail to address all range of
attacks. Livewire [24] is a VM architecture whose policies
protect certain parts of kernel space such as the code section
and the system call table from being modified. Paladin [13]
relies on an administrator to specify access control policies
for certain memory areas and system files. These policies
protect files from being replaced and memory areas from
being overwritten by using a containment algorithm based on a
dependency tree of processes and files. Xu et al. [47] proposes
a framework with an access control model for the specification
of policies and an architecture to enforce kernel integrity.
KernelGuard [40] prevents some dynamic data rootkit attacks
by monitoring writes to selected data structures.

In previous work [34] we developed a proof-of-concept
prototype for a system where a guest OS and a VM layer
communicated to prevent tampering against kernel code and
data segments at the architectural level. The system employed
a dynamic information flow tracking (DIFT) system [9] that
tainted network bytes. In a DIFT system we tag data (e.g.,
bytes) with some extra information (e.g., integrity or trust
level) and track how this data flows throughout the system. The
OS and VM exchanged information about the integrity (trust)
level of objects at both levels of abstraction. Whenever a low
integrity instruction attempted to perform a write operation
into high integrity areas of kernel code or data the write was
prevented (stopped) and a violation was signaled through an
exception. It was successful against several control and non-
control rootkits but it cannot defeat attacks that abuse existing
kernel code and APIs.

HookSafe [45] is based on static and dynamic analysis
and protects kernel hooks from being hijacked by relocating
them to a dedicated memory space and regulating their access
via hardware-based page-level protection. As it relies on
dynamic analysis, it may be incomplete and could miss some
hook access points. Secure Virtual Architecture (SVA) [20]
is a virtual low-level typed instruction set that enforces a
safe execution environment (memory safety, control-flow, type
safety and sound analysis) for kernel code and its applications.
It does not prevent, however, malicious code not exploring
memory safety errors (buffer overflows, format strings, double
frees) from corrupting the kernel and changing its behavior.

There are also many works addressing detection. Copilot
[37] is a kernel integrity monitor that uses a PCI add-in
card to access memory instead of relying on the kernel to
accomplish that. The authors addressed Copilot’s limitation of
not being applicable to dynamic kernel data structures with
an architecture that detects kernel violations by comparing the
kernel state with a specification of a correct state done by an
expert [38]. In a follow-up work, the authors also presented
a technique that employs an approximation of control-flow
graphs to periodically validate kernel state (each dynamically-
computed branch is validated) during execution [32]. These
techniques are not effective against attacks that tamper with
kernel data structures (such as the resource wastage attack
described by Arati et al. [14]) or that modify the kernel for
short periods of time.

Strider GhostBuster [44], Lycosid [31] and VMWatcher [30]
perform detection based on a cross-view approach: hiding
behavior is captured by comparing two snapshots of the same
state at the same time but from two different points of view
(one from the malware and the other not). Gibraltar [12]
detects rootkits modifying both control and non-control data.
During a training phase the kernel execution is observed and
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invariants for kernel data structures are hypothesized. These
invariants are used as specifications of the integrity of data
structures during an enforcement phase. A violation in these
invariants indicates the presence of rootkits. Wang et al. [46]
use a rootkit detection program to discover hooks that could
be used by kernel rootkits to avoid detection. The solution
is based on instrumenting and recording control-flow transfer
instructions. Carbone et al. [15] proposed a system to map
dynamic kernel data in a memory snapshot to enable integrity
checking. OSck [28] protects the kernel by detecting violation
in its invariants and monitoring its control flow. It monitors
control flow by enforcing type signature (return type, number
and type of parameters) of target functions. It will fail to
detect a violation if the malicious function has the same type
signature as the hijacked function or the rootkit leverages
legitimate kernel code.

Moreover, none of these current defense approaches are
able to defend the kernel against return-oriented rootkits
[29], which reuse existing code within the kernel to perform
malicious computations.

III. THE TTY KEYLOGGER

In the first keylogger, the terminal prompt was chosen as the
target of the attack. In Linux, many important operations are
done through the terminal, including operations that require
an administrator or root password. If a root password is
obtained, a malicious user would not have to implement any
exploits to gain root access; he/she must simply log in like
any normal user. This keylogger is an improvement of the
techniques presented in [7] and was implemented as a LKM
with complete access to the kernel. It has been tested (together
with the second keylogger) on Ubuntu 11.04 running Linux
2.6.38 in Oracle VM VirtualBox version 4.1.6.

A. The TTY
For the keylogger to work, we must first find the target

terminal prompt. In the Linux kernel, the struct tty struct
(linux/tty.h) is used to represent a terminal prompt. TTYs,
short for teletype, were used as I/O devices back when
computers were just beginning to multitask. Today, ttys are
no longer physical teletypes, but emulated in software, despite
working in the same way [4]. The tty (Figure 1) has a buffer to
store characters, an associated driver (though there is no actual
physical device) and an associated device (non-physical). For
this keylogger, we focus on the tty line discipline [4], which is
a layer of the tty that lies between the tty itself and the driver. It
provides an intermediate step between getting characters from
the tty driver to the tty, and providing functions like translating
raw characters. One important function is receive buf(), which
is called by the tty driver to send characters to the line
discipline. In our keylogger, we replace this function with our
own keylogging function.

When the module is first initialized, we need to open up
the tty. However, in any given Linux system, there is not a
single tty. A list of ttys can be found in /dev/. In general,
a tty will be a file with the format /dev/tty/X where X is
some integer. One user may be using /dev/tty7 while another
is using /dev/tty63. In the case of an xterm window, a pseudo-
terminal is created under /dev/pts/X where X is also an integer.
One implementation could be to hijack the sys open system
call. The new function would detect if a tty is being opened,
then replace the necessary function. However, many rootkit
detection systems protect the system call table, so this option

Fig. 1. The tty.

is not the best. Instead, we simply open /dev/tty without any
trailing integer, which is not tied to a specific tty; it represents
the currently active tty, regardless of whether or not it is an
xterm window or a regular root prompt.

1) Getting the TTY: The first step is to open the /dev/tty
file and obtain the tty struct from it. In Linux kernel, many
entities, devices included, are treated as files, so we must open
/dev/tty as a file, represented by the file struct. We open the
file using the filp open function, which returns a pointer to the
file. The file struct has a private data field, which is of type
(void *). In Linux, a tty is obtained by typecasting this void
pointer to a tty file private pointer, a data structure specific to
ttys. The tty file private struct has a field, which is a pointer
to a tty. This pointer points to the tty struct associated with
the opened file.

2) Hijacking receive buf: After obtaining the tty, we sim-
ply look for the receive buf function, and if it exists, we
replace it with our own. The tty struct has a pointer to a
tty ldisc struct, which represents the line discipline of the tty.
The tty ldisc struct then points to a tty ldisc ops struct, short
for tty line discipline operations. This struct contains function
pointers to the functions provided by the line discipline,
including the receive buf function. The pointer chain looks
like this: tty->ldisc->ops->receive buf. With this function
pointer, we first store the original function pointer, then replace
the function with a pointer to our own function. Upon exiting
the module, we restore the function pointer with the original
pointer that we stored.

The receive buf function does not return a value and takes
the following parameters: (struct tty struct* tty, const unsigned
char* cp, char* fp, int count). Our own function must match
these parameters, even if it does not use them all, thus
defeating OSck [28] rule of type safe, which requires the target
function to have the same number and type of parameters
of the original function in an uncompromised kernel. The
parameters we are interested in are the const unsigned char*
cp, which points to the char buffer that we want to log, and int
count, which is the number of bytes contained in the buffer. In
general, our new function writes these characters to our own
buffer, and then writes our own buffer to a log file whenever
the user presses the enter key.

B. Logging the Keys
When logging the keys, we cannot simply copy the keys

as is. This is because there may be special keys pressed that
cannot be printed easily, such as TAB or CTRL+C. The first
thing our log function does is to check the count parameter. In
most cases, this will be 1, and so we can expect an ASCII key.
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The function will obtain this key and check for cases in which
the user presses a special key. Rather than simply logging the
key, we log a legible sequence of characters, such as ˆC (if
the user pressed CTRL+C). These new characters and strings
are stored in our own buffer until they are ready to be written
to a log file. If the user presses a backspace key, we backtrack
in our buffer, writing 0s into the keys that are deleted. When
we find CTRL+M or \n (the user pressed enter), then we log
it to our buffer and reset it, making it ready for a new set of
keystrokes. We must also log keys when the tty is in canonical
mode and not in raw mode. When in raw mode, the tty will
not process the keys, giving us raw data instead [5], so we
only obtain the keys after the tty has processed them.

We can also infer when the tty is expecting a password
because it turns off echoing in this situation. The kernel
provides us with macros to check this. When the user presses
enter and the tty has echoing turned off, we add a message
to our log file, indicating that the line that was just logged
was a password. After the logging has been done, we call the
original receive buf function so that execution of the kernel
can continue as usual.

C. Limitations and Defenses

This keylogger records only local terminal sessions. If, for
example, the user remotely logs onto another host using ssh,
those keys will not be logged. However, the user still has to
remotely log into the host on a local terminal, so the username
and password will still get logged. The keylogger is also
limited to what keys it can log. This current implementation
will only log single ASCII characters, but improving it to
log other types of characters is straightforward. Because the
receive buf function indicates the number of chars/bytes in
the buffer, counts greater than 1 will have special keys, which
can be checked and logged appropriately. Another limitation
is that, because /dev/tty refers to the currently active tty,
the keylogger does not distinguish between different ttys. A
user could scramble our log file by typing between multiple
terminal prompts in random order. This can be remedied as
the receive buf function passes a pointer to a tty which we
could use to identify separate ttys and log them separately.

The best defense against this type of keylogger is to blacklist
it. If it gets installed in the system by an administrator by
mistake, bad judgment or social engineering deception most
of current approaches will not be able to stop it. Copilot
and its follow-up approaches [37], [38], [32] only perform
checks for periods of time. HookSafe [45] cannot guarantee
it will find and protect the receive buffer hook, although it
can include it as part of a policy. OSck [28] will treat our
malicious function as benign as it has the same signature as
the benign one. The strategy presented in [34] can defeat this
keylogger as the hijack of the original receive buffer function
will correspond to a write into the kernel data segment by a
suspicious instruction (its bytes came from the network).

IV. THE NOTIFIER-CHAIN KEYLOGGER

This keylogger is based on [1] and, to remain hidden,
it attempts to be as indistinguishable from legitimate kernel
modules as possible. To this end, it abuses a legitimate kernel
API rather than proactively try to trick the kernel into giving
us keystrokes by modifying specific kernel data structures or
hijacking key kernel functions. Specifically, it registers itself
with the Linux’s keyboard notifier chain to capture keystrokes.

Fig. 2. Linux notifier chains.

Abusing the keyboard notifier chain allows this keylogger to
successfully capture keystrokes without modifying any kernel
code or data whatsoever. Furthermore, we can completely
avoid violating any kernel invariants in the process. This “hide
in plain sight” approach makes it much more resistant to
security solutions that rely on checksums, monitoring kernel
control flow and protecting function pointers.

A. Linux Notifier Chains
Notifier chains are a lightweight mechanism that facilitates

flexible communication between portions of kernel code. They
allow LKMs to request notification from other parts of the
kernel when specific system events occur. This mechanism
was initially developed in Linux v.1.1 to provide interested
kernel modules with information about network events [3].
In subsequent kernel releases, more notifier chains have been
added to the kernel, allowing code to request notifications
about a wider range of possible events. A notifier chain is
essentially just a linked list of callback functions. The kernel
code responsible for detecting a given event must maintain the
list head. When the given event occurs, the detecting module
traverses the list, calling each function in the chain.

To register with a specific notifier chain, a module must add
an entry to the head of the list with a pointer to its callback
function. Any module may register a callback function with a
notifier chain. Once a module no longer needs to be notified
about a particular event, it simply removes its callback function
from the chain. This strategy for publishing notifications about
asynchronous events makes notifier chains extremely versatile,
and well suited to handling communication between kernel
modules. Figure 2 shows a malicious module adding a callback
function to a notifier chain. Initially, the tail of the notifier
chain is func 0 and the head is func i (a). The tail’s next
pointer contains the value 0x00000000, or null, indicating the
end of the list. When the malicious module adds its callback
function, evil func, to the notifier chain, it is added to the head
of the list. The next pointer of evil func points to func i, now
the second function in the list (b). As other modules register
callback functions with the notifier chain, the head of the list
is updated. For example, when func j is added, it becomes the
list’s new head (c).

In Linux v.2.6.24, a keyboard notifier chain was added,
allowing interested modules to request notification whenever
a keystroke occurs. To capture keystroke information, our
second keylogger registers a malicious callback function with
the keyboard notifier chain, as illustrated by Figure 2. When a
keystroke occurs, the notifier chain calls the callback function,
and passes a pointer to a keyboard notifier param struct
(Figure 3), which contains information about the keystroke.

B. Translation
The keyboard notifier param structure can provide infor-

mation about which key was pressed in three different formats:
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Fig. 3. The keyboard notifier param struct.

keycodes, Unicode or key symbols. While Unicode informa-
tion is more convenient, as it can be logged directly, it is
only used for special function keys that come on certain types
of keyboards, such as media keys (play, pause, etc.) and web
navigation keys (home, forward, backward, etc.) [2]. We could
use keycode or key symbol information to log keystrokes,
but key symbols are more convenient. Keycodes are 7-bit
quantities that uniquely identify each key on a keyboard [2].
While this is convenient because it would allow our keylogger
to distinguish between any two keys on the keyboard, it
becomes tedious because duplicate keys (left and right ctrl,
alt and shift keys, for example) generally should be treated
identically in our log file.

Key symbols are 16-bit quantities. The high order byte
provides type information, while the low order byte provides
value information [2]. To translate key symbols into ASCII
characters, the Linux kernel uses the high byte to select
the appropriate translation function. The translation function
then uses the value to return an ASCII representation of the
keystroke. For example, the key symbols 0xf103 and 0xf303
both have a value of 0x03, but they correspond to different
keys (the F4 key, and the number pad’s 3 key, respectively).
Using type information, the kernel selects different translation
functions to handle these two key symbols. We mimic this
strategy, but define our own translation functions. Writing
a custom translation functions grants us greater freedom in
determining how our log file looks.

C. Limitations and Defenses
This keylogger cannot log keystrokes from ssh or other

remote login sessions. This is because keystrokes from remote
sessions come in over network interfaces, and the keyboard
notifier chain only detects keystrokes generated by the physical
keyboard. This keylogger does not corrupt any kernel hook,
data structure or any portion of kernel code and data segments.
It can evade all previously discussed defense approaches if not
blacklisted from installation in the first place.

V. KERNEL PROTECTION

The problem of defending against malware that can modify
the OS remains open and is difficult. The majority of the pro-
posed solutions for protecting the kernel against compromises
employ virtualization. In the traditional VM usage model [18],
it is assumed that the VM is trustworthy and the OS running
on top of it can be easily compromised by malware. This
traditional usage model comes with a cost: the semantic gap
problem (Figure 4). There is significant difference between the
abstractions or the state observed by the guest OS (high level
semantic information) and by the VM (lower level semantic
information). Current VM-based kernel defense solutions do
not count on active collaboration between a guest OS and a
VM to enhance system security or bridge this semantic gap.
They use a technique called introspection to extract meaningful
information from the system they monitor/protect [24].

Fig. 4. The semantic gap.

With introspection, the physical memory of the current VM
instance is inspected and high level information is obtained
by using detailed knowledge of the OS algorithms and data
structures [21], i.e., the OS state is inspected from an outside
entity, a VMM. Introspection solutions assume that even if
the guest OS is compromised, their mechanisms and tools,
residing at a lower-level (VM), will continue to report accu-
rate results. However, as argued by Baram et al. [11], these
solutions share the questionable assumption that the original
kernel data structures and memory layout are not tampered
with by the untrusted guest OS they want to protect. This
assumption does not hold because kernel-level malware can
indeed tamper with kernel data structures (structure, semantic,
location) so as three views of the system are provided [11]:
(i) an external view, which is bogus and is intended for an
introspection/defense tool to see, (ii) an internal view which
is bogus and is intended for the guest OS to see and, (iii) the
actual view, known only to the attacker. Thus, introspection-
based defense tools do end up relying on the integrity of the
guest OS to function correctly. They depend on the guest OS
data structures and algorithms to be uncompromised to report
correct results and such assumption does not hold in the face
of kernel-level malware that directly manipulates these data
[11]. This raises the following question: why not leverage the
guest OS in VM-based security approaches?

We are currently researching a novel architecture that chal-
lenges this traditional model. Our proposal is to improve
introspection between a guest OS and VM by employing the
concept of collaboration. This allows the VM to get a much
better idea of what is going on in the guest OS without
having to reverse engineer it from low-level data structures.
Collaboration helps closing this semantic gap, thus allowing
for stronger and more flexible security approaches to be
developed. We claim that (i) this paradigm allows for more
fine-grained and flexible security solutions to be developed
and, (ii) this approach is no less secure than the traditional
model, as introspection tools also depend on the kernel data
structures and algorithms to be untampered to report correct
results [11].

In this architecture the OS downcalls the VM through a
protected new software interrupt that will only be used for
this purpose, i.e., it will be an unused software interrupt in
the Intel x86 ISA (Instruction Set Architecture). This software
interrupt will be only allowed to be invoked from within
selected kernel functions and we will only permit legitimate
kernel code inside a trusted execution context to invoke it
(a system call, for example). This prevents malicious return-

101101



Fig. 5. The collaborative architecture.

oriented malware [29], built from random instructions from
the kernel but not belonging to a trusted execution context
to initiate bogus communications with the VM. For example,
the VM could check if the instructions actually belong to
a particular system call, function or handler instead of an
instruction from a random memory location even if it belongs
to the kernel. The VM processes the OS downcall and returns
information in general purpose registers or in special protected
OS memory areas. If the VM initiates a communication with
the OS it does so using new exceptions (Figure 5).

Why is collaboration better to help bridge this semantic
gap? By actively involving the guest OS into the virtualization
layer we are able to combine two key advantages: (i) the best
possible view of objects at OS level, and (ii) the isolation and
hardware extensibility properties of VMs.

Our assumption is that the VM is trustworthy and the guest
OS might be partially compromised. We say partially because
we assume that the interface between guest OS and VM
is assumed to be untampered. This interface and associated
memory locations, as we discussed above, are protected at the
architecture level. This is feasible because they represent a
much smaller trusted computing base when compared to the
entire OS kernel.

The architecture envisioned is DIFT-based [9]. DIFT (dy-
namic information flow tracking system) is a powerful and
promising technique with several different applications in
security solutions. Currently two challenges prevent it from
being widely deployed in protection schemes: performance
and stability, which prevents these systems from tracking all
necessary dependencies. Fortunately, current research have
been addressing these issues [39], [27], [17], [16], [9]. In spite
of that, this architecture will be designed so that it can be
employed in a non-DIFT manner as well. The DIFT system
is associated with the VM and is responsible for marking
instruction bytes with a certain integrity level based on a
general policy, e.g., all bytes coming from network source X
are considered low-integrity.

To defeat kernel-level keyloggers we will distinguish in-
structions performed by different subjects at kernel level. For
example, when the CPU is executing a particular instruction
the VM needs to know whether or not: (i) the instruction is
executing at kernel or user level, (ii) the OS is in interrupt or
process context, or executing instructions from a kernel thread
or module, (iii) the instruction is from original kernel code or
new code (LKM) installed from the network, (iv) the module
where instruction comes from is trusted, (v) the instruction is
performing a read operation from a sensitive memory area. The
main idea is to mark keyboard data at the source as sensitive
and keep track of how this data is being used at the VM layer,
e.g.which operation is being performed (read/write), privilege

level of the instruction executing and which execution context.
Based on this information, the VM should decide whether or
not to allow the operation (e.g.a read). If the operation is not
to be allowed the VM should not only prevent it but also
notify the OS about this violation. The system may decide to
stop executing instructions from that particular context (e.g.,
a module) altogether, uninstall the module, or just continue
executing the instructions but restrict the module’s access
to system resources and kernel areas. In this strategy, the
OS is responsible for instructing the VM in advance about
boundaries of sensitive memory areas and data structures. For
example, to defeat the first keylogger the OS can instruct the
VM to mark the keylogger buffer char *cp memory region at
architecture level as sensitive and the VM would not allow read
operations from suspicious instructions, for example, modules
installed from the network. For the second keylogger, the OS
could instruct the VM to mark the keyboard notifier chain
data structure as sensitive at architecture level and only allow
execution of non-suspicious callback functions. This approach
allows modules to be installed in the system (relieving the
burden of blacklisting) and execute normally as long as they
do not attempt to perform any suspicious operation, e.g., read
from a keyboard buffer.

VI. CONCLUSIONS

Despite the great number of kernel defense approaches
proposed in the literature against keyloggers or other types of
kernel-level malware the problem is still open and difficult.
OS kernels have a very complex design in general with a
great number and variety of data structures, hooks and many
other avenues for exploitation. New generation of malware are
starting to explore existing kernel code and APIs to succeed. In
this paper we described the implementation of two kernel-level
keyloggers and stressed the need for novel, stronger and more
flexible defense approaches. Explicit collaboration between a
guest OS and a VM layer underneath it to bridge the semantic
gap between these two layers of abstraction, as sketched in
this paper, seems like a promising research direction to better
protect the OS kernel integrity.
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