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Abstract—We report on the development of BlueJay, a
hybrid Rabin-based public key encryption cryptosystem that
is suitable for ultra-lightweight (total 2000-3000 GE) platforms
such as microsensors and RFID authentication tags. The design
is related to authors’ Passerine and the Oren-Feldhofer WIPR
proposals, but is suitable to a wider array of applications.
The encryption mechanism is significantly faster and the
implementation more lightweight than RSA (even with public
exponent 3) and ECC with the same security level. Hardware
implementations of the asymmetric encryption component of
the hybrid cryptosystem require less than a thousand gate
equivalents in addition to the memory storage required for
the payload and public key data. An inexpensive, milliscale
MCU SoC BlueJay implementation is reported and compared
to RSA-AES on the same platform. The private key operation
(not performed by the light-weight device but by the sensor
network base station or a data acquisition reader) has roughly
the same complexity as the RSA private key operation.

I. INTRODUCTION

Most modern hand-held and portable devices such as

smart phones and tablets are able to support standard crypto-

graphic algorithms of arbitrary strength. However, there are

emerging application areas where public key cryptography

is not seen as a viable option [1], [2].

• Wireless sensors in military and health care have

shrunk during the past two decades from inch-scale

to millimeter-scale [3]–[6]. These are often used to

transmit sensitive information and hence have a require-

ment for message confidentiality, integrity and sender

authentication.

• A passive RFID tag or a contactless smart card (such

as an e-passport) draws its operating power from a

reader and has to have a relatively low individual

manufacturing cost. These applications require at least

uncloneability and privacy (anonymity).

A. Where Public Key Encryption is Enough

There are clear advantages in using public key cryp-

tography instead of secret-key cryptography in the ultra-

lightweight domain. It is often sufficient for the lightweight

party to only implement public-key encryption without de-

cryption (private key) functionality.

1) Sensor Fields: If a multitude of sensors in a sensor
field share a “network key”, a compromise of a single node

and thereby the shared key may put the whole network out

of action. If the purpose of that sensor field is to transmit

sensory information to data collector node(s) in a secure

fashion, it is sufficient to encapsulate that data using the

collector’s public key at source.

2) Authentication (RFID): Another application area that
may be used (in conjunction with the first) is in public

key authentication protocols. For an overview of applicable

public key protocols, see [7].

3) Secure Logging: If an embedded device is to log

sensitive information in tamper-resistant “one-way” fashion

into a storage device such as flash memory, a lightweight

public key algorithm may be used. After the public-key

encrypted data has been written to storage, even the device

itself cannot access the plaintext data.

II. BLUEJAY IS A PASSERINE BIRD

We use the name Passerine [8] to refer to an imple-

mentation of the Rabin public key encryption algorithm

[9] utilizing Shamir’s randomized multiplication [10], [11]

technique, payload encoding into the randomizer and the

Chinese Remainder Theorem (CRT) to make the public key

encryption operation more efficient [12].

Passerine differs from comparable light-weight Rabin

public key encryption systems such as the Oren–Feldhofer

WIPR [13]–[15] or Shamir’s original scheme [10] by two

main novel distinguishing factors:

1) Our implementation fully utilizes the available mes-

sage space by encoding payload data into the random-

ization mask.

2) All arithmetic in the encryption operation is performed

using CRT techniques modulo a set of small, register-

sized numbers. There is no need for big integer

arithmetic.

As a result, the Passerine cryptosystems have superior en-

cryption performance to both RSA and ECC systems. The

decryption (private key) operation is roughly as demanding

as the private key operation of the RSA algorithm.
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A. The classical Rabin cryptosystem

The well-known Rabin cryptosystem derives its security

from integer factorization. Let n = pq be the public modulus
of sufficient size to resist attacks via factorization. The

large primes p and q constitute the secret key. To encrypt a
plaintext block 0 < X < n in the Rabin cryptosystem, it is
simply squared modulo n to produce a ciphertext block C.

C = X2 (mod n). (1)

To decrypt, the square root of C can be efficiently computed

only if the secret factors p and q of n are known. In fact
Rabin showed that recovering entire X from C and n alone
was equivalent to factoring n. No such direct equivalence
proof is known for RSA.

There are up to four square roots for each C; special
encoding must be used to guarantee that the correct plaintext

is identified. The square root operation is roughly equivalent

to the RSA private key operation in complexity.

B. Randomized multiplication

The modular reduction step of Equation 1 is more compu-

tationally demanding than the squaring operation itself. To

overcome this, randomized multiplication may be used. For

each encryption operation we select a non-repeating random

masking quantity Y > n and transmit

C = X2 + Y n. (2)

It can be shown that this scheme is as secure as the

original Rabin system, while the modular reduction step

has been replaced with a cheaper multiplication operation

[10]. The decryption operation is the same as in the original

scheme. The downside of Shamir’s original variant is that

the ciphertext is twice as long as the plaintext.

C. Encoding payload in the randomization mask

The mask Y can be recovered if the private key operation

to solve X is successful:

Y =
C −X2

n
(3)

We generate the Y mask by using a light-weight

symmetric authenticated encryption algorithm such as

Hummingbird-2 [16]. Its unique random 128-bit symmetric

session key is stored in the block X .
The symmetric authenticated encryption algorithm is also

used to encrypt and randomize most of the contents of

X (apart from the session key) and to produce a secure

authentication tag for the whole message. Hence the cipher-

text has the same length as the plaintext, secret key and

authentication tag combined.

Note that after the secret symmetric session key is re-

covered using the private key operation, it can be used to

decrypt an arbitrary amount of further data with entirely

symmetrical operations. Only the random session key needs

to be protected in a fully asymmetric fashion.

D. Use of a residue number system
A key difference between Equations 1 and 2 is that the

randomized variant 2 can be executed without division and

therefore a residue number system can be used.
For an arbitrary integer b, one may compute C mod b by

reducing the message quantities X , Y , and the public mod-
ulus n modulo b and performing the arithmetic operations
in Zb, the ring of integers modulo b:

C ≡ X2 + Y n (mod b). (4)

In BlueJay, the “base” super-ring ZB , B > C, consists of
small word-sized factors B = b0b1b2 · · · . Arithmetic opera-
tions in each subring Zbi may be performed independently

from each other. We have a system of simultaneous linear

congruences:

C0 ≡ X2 + Y n (mod b0)

C1 ≡ X2 + Y n (mod b1)

· · · · · · · · ·
Each Ci may be computed using word-sized modular squar-

ing, multiplication and addition operations, without the need

for big-integer arithmetic. The word-sized residues Ci are

transmitted as an unambiguous representation of ciphertext

C. The computationally superior receiving party is respon-
sible for the reconstruction of C from Ci. There are well-

known “de-CRT” algorithms; a good introduction to residue

number systems and Rabin decryption is given in Sections

2.4, 8.3 and 14.5 of [17].

III. EFFICIENT RING SELECTION

From practical perspective it makes sense to choose the

base B to consist of co-prime numbers that are close to a

word size for easy modular reduction. If the numbers are

not co-prime or close to the word size, there will be loss

of transmission efficiency. In the following we will consider

a case where an appropriate n ≈ 21024 is used and the
ciphertext size is therefore 2048 bits.

Prime base: Simply choosing the 64 primes that

are closest to 232 as the base B = 4294965793 ×
4294965821 × . . . × 4294967291 yields a transmission ca-
pability of log2(B) ≈ 2047.999982 entropy bits, which is
very close to the channel optimum. However, the storage

requirement for those 64 primes alone makes this selection

inappropriate for many applications.
Linear sequence: To save implementation space, one

may consider using linear sequences as the base. We can

illustrate this by choosing bi = 232 − 1407 − 9699690i.
With this sequence of base words we can decode numbers

up to C <
∏63

i=0 bi ≈ 22026.7571 uniquely with 64 words.
The transmission rate is roughly 98.96% in this case. This

sequence works nicely because the “slope constant” 9699690

is the product of the eight smallest primes and therefore

ensures that the numbers sequence are not divisible by those

(since gcd(b0, 9699690) = 1).
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Table I
BASE COMPRESSION BITS OF THE REFERENCE IMPLEMENTATION.
THESE ARE USED TO QUICKLY GENERATE 65 COPRIME “BASE”

NUMBERS.

Δ1...64 = ( 0, 0, 0, 0, 1, 1, 1, 0,
1, 1, 0, 0, 1, 0, 1, 0,
0, 0, 1, 0, 0, 1, 1, 0,
0, 1, 1, 1, 1, 0, 0, 0,
1, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1,
0, 1, 1, 0, 0, 1, 1, 0,
1, 0, 0, 0, 1, 1, 0, 0 ).

Base compression: We have discovered that by setting
b0 = 232 − 3 and computing each subsequent bi as

bi+1 = bi −Δ where Δ ∈ {90, 120}, (5)

we can get to near-optimal capacity of log2
∏64

i=1 bi ≈
2047.999664 bits or 99.999984%. Each Δ index can be

stored as a single bit.

Table I gives the delta bits we use in our reference

implementation. The table gives Δi values that can be used

to generate a descending sequence of 65 coprime numbers

b0, b1, . . . b64 = 4294967293, 4294967203, · · · , 4294960753.
Start with b0 = 232−3 and compute bi = bi−1−30Δi−90.
We have discovered similar “two-step sequences” for up

to 4096 bit capacity with a 32-bit word size, but with larger

Δ values.

Note that since each one of the bi is odd, b = 232 can
also be used. In this special case the algorithmic modular

reduction step is not necessary as the least significant 32 bits

of X , Y and n may be used directly.

IV. A BIT-SERIAL PASSERINE IMPLEMENTATION WITH

SMALL REGISTERS

BlueJay is designed to allow straightforward bit-serial

hardware implementation using small registers for the public

key encryption function. The more complicated decryption

function can not be implemented this way.

Let red(r, b) denote conditional subtraction of a modulus
b from r, 0 < r < 2b:

red(r, b) = r mod b =

{
r if x < b

r − b if r ≥ b

If we have b = 2w−δ for some word size w and relatively
small δ, we may implement reduction with overflow bits.

This may be more efficient as it allows us to process more

than one bit at a time:

red′(r, b) = (r mod 2w) + δ
⌊ r

2w

⌋
. (6)

In Equation 6, the overflow bits are multiplied by δ and
added to r truncated to w bits. This works correctly since

2w ≡ δ (mod b).

X Y

(split in half)

public modulus n

shift register r

modulus bi

register u

register t

output word

Δ table

External RAM

RED(r, b)

MUX

MUX

encrypted payloadrand key auth tag

logic

adjust bi

1

32

32

Figure 1. Simplified block diagram of a bit-serial BlueJay hardware
implementation. Ciphertext Ci = C mod bi is produced and transmitted
one word at a time.

Algorithm 1 gives the complete reduction and alge-

braic step for producing a single word of asymmetrically

encrypted ciphertext. We see that this type of hardware

implementation requires only a single word-sized (32-bit)

shift register with conditional subtraction r ← red(r, b), two
registers for storage and �log2 bXY � clock cycles.
Figure 1 illustrates the operation of Algorithm 1 and the

components required in the operation of this algorithm.

Note that when implementing these algorithms, the “if”

statements should have “else” counterparts that implement

non-operations with equivalent time and power consumption

profile to counter side-channel attacks [18], [19].

V. THE BLUEJAY HYBRID CRYPTOSYSTEM

BlueJay is a combination of the Hummingbird-2

lightweight authenticated encryption algorithm and Passer-

ine optimized for a 1024-bit public modulus n and 32-bit
register size.

Since Hummingbird-2 requires only 2159 Gate Equiva-
lents (GE) [16] (and can be as small as 1200 for encryption

only), the total hardware size required to implement BlueJay

is under 3000 GE, in addition to the memory used to store
payload and public key information.

Algorithm 2 describes how Hummingbird-2 is used with

Passerine in BlueJay. Here the parameters are w = 32 and
the loop on line 6 has 65 iterations. One ciphertext block

can carry 1792 bits of payload data, a 128-bit secret key and

a 128-bit authenticator. The same 128-bit key can be used

to encrypt further data in entirely symmetric fashion.
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Algorithm 1 psrn(x, y, nb, b) : Produce one asymmetric ciphertext word from plaintext (x�log2 X�· · ·x1x0 || y�log2 Y �· · ·y1y0),
with binary representations X =

∑
i=0 2

ixi, Y =
∑

i=0 2
iyi, given the precomputed quantity nb = n mod b.

1: r = 0 Clear the r register for computation of (Y n mod b).
2: for i = �log2 Y �, . . . , 2, 1, 0 do
3: r ← red(2r, b) Left-shift the contents of r and subtract b in case of overflow.
4: if yi = 1 then
5: r ← red(r + nb, b) Add (precomputed) nb = n mod b to multiply that quantity with Y .
6: end if
7: end for
8: t← r Store (Y n mod b) to register t.

9: r ← 0 Clear the r register for computation of (X mod b).
10: for i = �log2 X�, . . . , 2, 1, 0 do
11: r ← red(2r + xi, b) Left-shift r and append a bit of x to the right, subtract b in case of overflow.
12: end for
13: u← r Store (X mod b) to register u.

14: r ← 0 Clear the r register for computation of (X2 mod b)
15: for i = �log2 b�, . . . , 2, 1, 0 do
16: r ← red(2r, b) Left-shift the contents of r and subtract b in case of overflow.
17: if ui = 1 then
18: r ← red(r + u, b) Add multiplicand u = x mod b.
19: end if
20: end for

21: return red(r + t, b) Return (and immediately transmit) the ciphertext word r = (X2 + Y n) mod b.

Table II
RVM0CL V1.02 CORTEX M0 CRYPTO LIBRARY AND THE BLUEJAY.

Component Bytes Description
aes128.o 4430 AES-128 and CBC.
m0rsa.o 3980 Raw RSA functionality.
pkcs.o 586 PKCS #1 v1.5 encoding and decoding.
sha1.o 560 SHA-1.
drbg.o 366 Deterministic Random Bit Generator.

bluejay.o 292 Passerine (BlueJay).
hb2.o 4174 Hummingbird-2 (with MAC).

VI. COMPARISON ON THE CORTEX M0 PLATFORM

We present results of comparison between RVM0CL [20]

(a commercial RSA / AES / SHA library) and BlueJay

on a lightweight MCU based on the Cortex M0 / M0+

instruction set [21], [22]. Figure 2 shows NXP LPC1102,

a SoC that implements this architecture in an inexpensive,

small, and readily available form factor. Note that M0 / M0+

cores (which themselves have an area of typically under

12k gates) do not have a division instruction or hardware,

making implementation of public key algorithms based on

modular arithmetic especially challenging. Table II gives

the implementation sizes of these cryptographic components

with the Thumb instruction set of M0.

As expected, BlueJay encryption is significantly faster

when compared to RSA. Table III gives a performance com-

parison of these two algorithms on Cortex M0. The private

Table III
BLUEJAY VS RSA ENCRYPTION PERFORMANCE ON CORTEX M0.

Algorithm Parameters Cycles
BlueJay n ≈ 21024 225,000
RSA n ≈ 21024, e = 3 929,000
RSA n ≈ 21024, e = 17 2,417,000
RSA n ≈ 21024, e = 65537 8,297,000

key operation requires about 180 × 106 Cortex M0 cycles
for both RSA and BlueJay. The RVM0CL library requires

812 bytes of working space, whereas BlueJay requires less

than 50 bytes if the ciphertext words are transmitted as they

are computed.

VII. CONCLUSIONS

We have described BlueJay, a lightweight hybrid public

key encryption algorithm. BlueJay is based on the Rabin

cryptosystem and breaking it is provably as hard as factoring.

The public key operation is an order of magnitude faster than

RSA (and 2-3 orders of magnitude faster than ECC), while

the private key operation is almost exactly as demanding

as the RSA private key operation. BlueJay is intended for

sensor data acquisition, RFID authentication, and secure

logging applications, where only the public key operation

is required. The algorithm core can be implemented in

hardware with less than one thousand gate equivalents or

less than 300 bytes of code on the Cortex M0 platform.
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Algorithm 2 bluejay(p, n) : Encrypt plaintext p to a recipient whose public key is n.

1: k ← random 128-bit key

2: (z, a)← HB2(p, k)
Run Hummingbird-2 on plaintext p with key k to produce ciphertext z and an
authentication tag a.

3: x← k || (first half of z) Store 128-bit symmetric key k and �log2 n� − 128 bits of z in x.

4: y ← (second half of z) || a Store �log2 n� − 128 bits of z and the 128-bit authenticator a in y.

5: b← 2w The base modulus is in b.
6: for i = 1, 2, . . . ,

⌈
2 log2 n

w

⌉
do

7: b← b−Δi Δi comes from a table lookup; it is compressed as discussed in Section III.

8: transmit
(
psrn(x, y, ni, b)

) The quantity ni = n mod bi either comes from a precomputed table or is reduced
on the fly like x and y.

9: end for
10: transmit(rest of z) Arbitrary amount of symmetric ciphertext.

Figure 2. Implementations were compared on the Cortex M0 platform.
Pictured is NXP LPC1102, a Cortex M0 self-contained system-on-chip
(with an on-chip clock source) that has WLCSP16-packaged external
surface area of 2.17 × 2.32 = 5.03 mm2 or 1

128th
of a square inch.
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