
A Method for Preventing “Skipping” Attacks

Marc Joye
Technicolor, Security & Content Protection Labs

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
Email: marc.joye@technicolor.com

Abstract—Until recently, known fault attacks against (non-
CRT) exponentiation-based cryptosystems were supposed to
be of rather theoretical nature, as they require a precise
fault injection, e.g., a bit flip. However, Schmidt and Herbst
(FDTC 2008) reported practical fault-attacks against RSA
in standard mode using low-cost equipment. Although their
attacks were described against RSA, they readily extend to any
other exponentiation-based cryptosystem. This paper describes
an efficient method to prevent those new attacks.

Keywords-RSA cryptosystem; exponentiation-based cryp-
tosystems; fault attacks; skipping attacks; countermeasures.

I. INTRODUCTION
It is well understood that the use of a strong cryptosystem

is not enough to guarantee the security. Indeed, if not
properly implemented, secret information can be recovered.
In particular, cryptographic implementations should resist
against fault attacks [1]. Among them, we quote a special
type of attacks against RSA [2], which we refer to as skip-
ping attacks, that were reported by Herbst and Schmidt [3].
The basic operation in RSA is the evaluation of a mod-

ular exponentiation, say y = xd mod N . A faster way
to compute this exponentiation is to rely on the Chinese
remainder theorem (CRT) [4]. However, our main focus will
be on the secure evaluation of non-CRT (a.k.a. standard)
exponentiations. There are several reasons not to consider
CRT implementations. One of them is the key management
or infrastructure: the format and the size are different.
Another reason is security: CRT implementations of RSA
are very sensitive to fault attacks [1], [5].
Shamir provided an elegant countermeasure against fault

attacks [6] (see also [7]). When applied to RSA in standard
mode for the evaluation of y = xd mod N , the countermea-
sure is:
1) Compute y′ = xd mod rN for a (small) random
integer r;

2) Compute z = xd mod r;
3) Check whether y′ ≡ z (mod r), and

• if so, output y = y′ mod N ;
• if not, return error.

Typically, r is a 64-bit integer. The correctness of Shamir’s
method follows from the Chinese remainder theorem. When
the calculations are correct, it is obvious that y′ ≡ y
(mod N) and y′ ≡ z (mod r). In the presence of random

faults, the probability that y′ ≡ z (mod r) is about 1/r.
When r is a 64-bit value, this means that a random fault is
undetected with probability of roughly 2−64. Larger values
for r imply a higher detection probability at the expense of
more demanding computations.
Vigilant [8] proposed an alternative solution. For the

evaluation of y = xd mod N in standard mode, it goes as
follows:
1) Form X = CRT(x (mod N), (1 + r) (mod r2)) for
a (small) random integer r;

2) Compute y′ = Xd mod r2N ;
3) Check whether y′ ≡ 1 + dr (mod r2), and

• if so, output y = y′ mod N ;
• if not, return error.

In Step 1), CRT denotes an application of the Chinese
remainder theorem; namely the so-obtained X satisfies
X ≡ x (mod N) and X ≡ 1 + r (mod r2). Hence, we
have y′ ≡ xd (mod N) and y′ ≡ (1 + r)d (mod r2)
when the computations are not faulty. The correctness
of Step 3) stems from the binomial theorem. We have
(1 + r)d =

∑
0≤k≤d

(
d
k

)
1d−k rk, where

(
d
k

)
denotes the

binomial coefficient. Reducing this identity modulo r2 gives
(1+r)d ≡ 1+dr (mod r2) and thus y′ ≡ 1+dr (mod r2)
when the computations are not faulty. The probability that
a random fault is undetected is expected to be about 1/r2.
As a result, a 32-bit value for r in Vigilant’s method should
provide the same security level as a 64-bit value for r in
Shamir’s method.
Vigilant’s method presents a couple of advantages over

Shamir’s method. Specifically, it trades the exponentiation
z = xd mod r against the multiplication 1 + dr mod r2,
which is much faster. We note however that the evaluation of
z in Shamir’s method can be sped up as xd mod ordr(x) mod
r (where ordr(x) denotes the order of x as an element in
(Z/rZ)×), provided that this value (or a multiple thereof)
is known.
Although offering protection against fault attacks —

and so against skipping attacks, Shamir’s method and its
variants when applied to RSA result in larger moduli for
the computation. More generally, when applied to a group
exponentiation, Shamir’s method and its variants imply
handling larger elements and somewhat expensive operations
(see for example [9] for an application to elliptic curve

2012 IEEE Symposium on Security and Privacy Workshops

© 2012, Marc Joye. Under license to IEEE.
DOI 10.1109/SPW.2012.14

12

IEEE CS Security and Privacy Workshops

12

groups). This may in turn incur important performance
losses. Other methods are known to protect RSA (numerous
countermeasures are reviewed in [10]), but they all come
with shortcomings or limitations.
There is therefore a need for an improved solution that

provides protection against skipping attacks. This paper pro-
vides such a solution. We give a generic description so that it
can be applied to any exponentiation-based cryptosystem in
any algebraic group, including on elliptic curves, regardless
of the underlying exponentiation algorithm.

The rest of this paper is organized as follows. In the
next section, we review skipping attacks. In Section III, we
present an efficient method to thwart the attacks and detail
some implementations. Finally, we conclude in Section IV.

II. SKIPPING ATTACKS

Known fault attacks against exponentiation-based cryp-
tosystems assume pretty strong fault models (see [11], [12]
for recent surveys). One exception are the skipping attacks
due to Schmidt and Herbst against RSA. In this section, we
describe their attacks when the exponentiation is performed
with the square-and-multiply algorithm. We however stress
that the attacks are applicable also to other exponentiation
algorithms.

LetG denote a multiplicatively written group with identity
element 1. For RSA, G is the multiplicative group of
integers moduloN ; i.e., (Z/NZ)×. The square-and-multiply
algorithm proceeds as follows:

Algorithm 1 Square-and-multiply
Require: x ∈ G, d = (dt−1, . . . , d0)2
Ensure: y = xd

1: R0 ← 1; R1 ← x
2: for i = t− 1 down to 0 do
3: R0 ← R0

2

4: if di = 1 then
5: R0 ← R0 · R1

6: return R0

The attack assumes that the adversary manages to skip
a squaring operation. This fault model is motivated by the
possibilities of glitch and spike attacks, as used for example
in [13]. This fault model is also validated in [3].
Suppose for example that the squaring at iteration j in the

for-loop of Algorithm 1 is skipped. As a result, the output,
denoted by ŷj , will be faulty and given by:

ŷj =
t−1∏

i=j+1

xdi 2
i−1

·

j∏
i=0

xdi 2
i

.

The attack then retrieves the value of exponent d in a
bit-by-bit fashion, starting from the least significant bit, as:

ŷj =

{
ŷj−1 for dj = 0

x2j−1

ŷj−1 for dj = 1
.

It is straightforward to adapt the described skipping attack
to make it work against other exponentiation algorithms.

A more sophisticated skipping attack was mounted against
ECDSA in [14]. We present hereafter a slight variant that
applies to any DSA-like signature scheme. Let G = 〈g〉
denote a (large) group of prime order n, generated by an
element g. Let also y = gd for some secret exponent d ∈
Z/nZ. Finally, let F : G → Z be some public function
mapping elements from G to integers and h : {0, 1}∗ →
Z/nZ be a hash function. The signature σ on a message
m ∈ {0, 1}∗ is given by the pair (r, s) with
• r = F (z) mod n where z = gk with k is chosen at
random in (Z/nZ)×, and

• s = k−1
(
h(m) + r · d

)
mod n.

The validity of signature σ = (r, s) is checked by ver-
ifying whether F (gu1 yu2) ≡ r (mod n) where u1 =
h(m)/s mod n and u2 = r/s mod n.
As an illustration, suppose again that the square-and-

multiply (Alg. 1) is used for exponentiation. Let k =
(kt−1, . . . , k0)2 denote the binary expansion of k and k̃
its least significant part (i.e., k̃ = (kj , . . . , k0)2 for some
j � t− 1). If the squaring at iteration j is skipped during
the computation of z = gk then the corresponding faulty sig-
nature will be given by σ̂ = (r̂, ŝ) where r̂ = F (ẑ) mod n
with

ẑ =
t−1∏

i=j+1

gki 2
i−1

·

j∏
i=0

gki 2
i

=
(
z · gk̃

)1/2

and ŝ = k−1
(
h(m) + r̂ · d

)
mod n. Note that since n is

a large prime (and thus is odd), square roots exist and are
unique in G. The main observation is that, letting û1 =
h(m)/ŝ mod n and û2 = r̂/ŝ mod n, one recovers z = gk

as
gû1 yû2 = g

h(m)
ŝ y

r̂
ŝ = g

h(m)+dr̂

ŝ = gk .

The attack therefore consists in testing for all possible k̃ ∈
{0, 1}j whether

r̂ ≡ F
(
(z · gk̃)1/2

)
(mod n) with z = gû1 yû2

holds. If so, the corresponding k̃ is a candidate value for
the least significant part of k. Collecting sufficiently many
such values from multiple faulty signatures then allows one
to recover the private signing exponent d through lattice
reduction [15], [16].

1313

III. AN EFFICIENT PREVENTION METHOD

As described in the previous section, an exponentiation
algorithm has to evaluate, on input an element x in a group
G and an exponent d, y = xd.
The idea consists in evaluating, in parallel with y = xd,

the value of f = d ·1 or a derived value thereof. The evalua-
tions are performed using the same exponentiation algorithm
by “gluing” together the group operations underlying the
computation of y and f . In this context, “gluing” means
that the two group operations appear as an atomic operation,
so as to ensure that a perturbation to one operation also
perturbs the other. Further, we note that such a behavior
can be emulated; see an example at the end of this section.
This models the fact that a perturbation will likely affect
operations that are performed close in time.
The computation of f may be carried out over the integers,

or for better efficiency, over the integers modulo Ω (where
typically Ω is a 64-bit value). The computation is assumed
to be error-free if f is equal to d (when calculated over the
integers) or if f is equal to d modulo Ω. More generally, the
computation of f may be computed in any group G′ where
the computations are fast. The first case corresponds to G′ =
Z+ and the second case to G′ = (Z/ΩZ)+ (namely, the
additive group of integers and the additive group of integers
modulo Ω). The correctness can also be checked “on-the-
fly”, e.g., after the computation of one or several words of
exponent d.

We describe below several applications of the method
when applied to the square-and-multiply algorithm.

Algorithm 2 Square-and-multiply protected against skipping
attacks (I)
Require: x ∈ G, d = (dt−1, . . . , d0)2
Ensure: y = xd

1: R0 ← 1; R1 ← x
2: T0 ← 0; T1 ← 1
3: for i = t− 1 down to 0 do
4: (R0, T0)← (R0

2, 2 · T0)
5: if (di = 1) then
6: (R0, T0)← (R0 ·R1, T0 + T1)
7: if (T0 	= d) then
8: return error
9: return R0

The implementation given in Algorithm 2 evaluates f over
the integers; R0 is the temporary variable used to compute
y = xd while T0 is used to compute f = d · 1. Algorithm 3
shows how to evaluate f over the integers modulo Ω.
A variant of Algorithm 3 is to compute d̄ = d mod Ω

at the beginning of the algorithm and then to replace the
final check with T0 	= d̄, i.e., without the (modΩ). More
generally, it is also possible to pre-compute some value

Algorithm 3 Square-and-multiply protected against skipping
attacks (II)
Require: x ∈ G, d = (dt−1, . . . , d0)2
Ensure: y = xd

1: R0 ← 1; R1 ← x
2: T0 ← 0; T1 ← 1
3: for i = t− 1 down to 0 do
4: (R0, T0)← (R0

2, 2 · T0 (mod Ω))
5: if (di = 1) then
6: (R0, T0)← (R0 ·R1, T0 + T1 (mod Ω))
7: if (T0 	≡ d (mod Ω)) then
8: return error
9: return R0

depending on d, say d̄ = G(d), and then check whether
G(T0) 	= d̄ for some function G.

It is worthwhile noting that the operations on (R0, T0)
are performed in an atomic way. Such a behaviour can
be emulated by “gluing” together the operations. This is
important as otherwise a skipping attack on R0 may remain
undetected. In order to glue the operations, an additional
register A is used together with two random elements
r, r′ ∈ {0, 1}|A|. Random elements may be chosen once for
all at the beginning of the exponentiation or dynamically
whenever a glued multiplication is evaluated. Furthermore,
for improved efficiency, random elements r and r′ can be
derived from shorter random seeds. In the following algo-
rithm, an overlined element viewed as a bitstring (e.g., T0)
means the two’s complement and ⊕ denotes the exclusive-
OR operator applied to two elements viewed as bitstrings.

Algorithm 4 Example of glued multiplication
Require: R0, R1, T0, T1, r, r′
Ensure: (R0 · R1, T0 + T1)
1: A← r′

2: T0 ← T0

3: A← R0 · R1

4: A← A⊕ r
5: T0 ← T0 + T1

6: R0 ← A⊕ r
7: return (R0, T0)

It is easily verified that if one of the above instructions
in the glued multiplication is skipped this will result in
a random value for R0 or in an incorrect value for T0.
In the first case, the returned faulty value for R0 will
appear random and so the final output of the exponentiation
algorithm will be of no use for the attacker. In the second
case, the incorrect value for T0 will be detected at the end
of the exponentiation.

1414

A similar algorithm can be designed for the squaring.
Likewise, we can design similar algorithms wherein T0+T1

(resp. 2 · T0) is computed modulo Ω. There are of course
numerous possible ways of implementing the gluing as long
as the skipping of one or several continuous operations
results in a loss of consistency.

IV. CONCLUSION
This paper presented an efficient method for preventing

skipping attacks. The overhead induced by the countermea-
sure is minimal and does not impact the overall performance
of the computation. It is generic and applies to any expo-
nentiation algorithm.

REFERENCES
[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the impor-

tance of eliminating errors in cryptographic computations,”
Journal of Cryptology, vol. 14, no. 2, pp. 101–119, 2001,
extended abstract in Proc. of EUROCRYPT ’97.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[3] J.-M. Schmidt and C. Herbst, “A practical fault attack on
square and multiply,” in 5th Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC 2008), L. Breveglieri
et al., Eds. IEEE Press, 2008, pp. 53–58.

[4] J.-J. Quisquater and C. Couvreur, “Fast decipherment algo-
rithm for RSA public-key cryptosystem,” Electronics Letters,
vol. 18, no. 21, pp. 120–126, 1982.

[5] M. Joye, A. K. Lenstra, and J.-J. Quisquater, “Chinese re-
maindering based cryptosystems in the presence of faults,”
Journal of Cryptology, vol. 12, no. 4, pp. 241–245, 1999.

[6] A. Shamir, “How to check modular exponentiation,” Pre-
sented at the rump session of EUROCRYPT’97, Konstanz,
Germany, May 13, 1997.

[7] M. Joye, P. Paillier, and S.-M. Yen, “Secure evaluation
of modular functions,” in 2001 International Workshop on
Cryptology and Network Security, R. J. Hwang and C. K.
Wu, Eds., Taipei, Taiwan, Sep. 2001, pp. 227–229.

[8] D. Vigilant, “RSA with CRT: A new cost-effective solution
to thwart fault attacks,” in Cryptographic Hardware and
Embedded Systems − CHES 2008, ser. Lecture Notes in
Computer Science, E. Oswald and P. Rohatgi, Eds., vol. 5154.
Springer, 2008, pp. 230–145.

[9] J. Blömer, M. Otto, and Jean-Pierre-Seifert, “Sign change
fault attacks on elliptic curve cryptosystems,” in Fault Di-
agnosis and Tolerance in Cryptography, ser. Lecture Notes
in Computer Science, L. Breveglieri et al., Eds., vol. 4236.
Springer, 2006, pp. 36–52.

[10] M. Joye, “Protecting RSA against faults: The embedding
method,” in 6th Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC 2009), L. Breveglieri et al., Eds.
IEEE Press, 2009, pp. 41–45.

[11] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The sorcerer’s apprentice guide to fault attacks,”
Proceedings the IEEE, vol. 94, no. 2, pp. 370–382, 2006,
earlier version in Proc. of FDTC 2004.

[12] C. Giraud and H. Thiebeauld, “A survey on fault attacks,”
in Smart Card Research and Advanced Applications VI
(CARDIS 2004), J.-J. Quisquater et al., Eds. Kluwer, 2004,
pp. 159–176.

[13] C. H. Kim and J.-J. Quisquater, “Fault attacks for CRT-based
RSA: New attacks, new results, and new countermeasures,”
in Information Security Theory and Practices, ser. Lecture
Notes in Computer Science, D. Sauveron et al., Eds., vol.
4462. Springer, 2007, pp. 215–228.

[14] J.-M. Schmidt and M. Medwed, “A fault attack on ECDSA,”
in 6th Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC 2009), L. Breveglieri et al., Eds. IEEE
Press, 2009, pp. 93–99.

[15] N. A. Howgrave-Graham and N. P. Smart, “Lattice attacks
on digital signature schemes,” Designs, Codes and Cryptog-
raphy, vol. 23, no. 3, pp. 283–290, 2001.

[16] P. Q. Nguyen and I. E. Shparlinski, “The insecurity of the
Digital Signature Algorithm with partially known nonces,”
Journal of Cryptology, vol. 15, no. 3, pp. 151–176, 2002.

1515

