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Hypervisors (virtual machine monitors—VMMs) are
widely deployed in cloud infrastructure. They transfer data
and instructions from guest operating systems to the host
environment through virtual devices that are driven by I/O
operations (Port I/O—PIO or Memory-Mapped I/O—MMIO).
These I/O operations follow specific protocols and thus are
called virtual device messages.

Virtual devices are the most prominent attack surface in
hypervisors. Hypervisors isolate an untrusted guest from the
hypervisor and all other virtual machines. A key security
property is that a guest cannot escape from its virtual machine.
However, hypervisors are complex pieces of software and
researchers have discovered ways to escape them (e.g.,
QEMU, VirtualBox, and VMWare), with 41.5% (22/53) of
these escapes due to bugs in virtual devices [1]. According to
our CVE survey [2], 57.4% (252/439) of the vulnerabilities
in QEMU were found in virtual devices.

The security of virtual devices has been under heavy
scrutiny [3], [4], [5], [6], [7], [8], [9], [10]. Since VFD [7]
in 2017, fuzzing has become the dominant approach as
it implicitly abstracts device complexity through concrete
executions, outperforming symbolic approaches. Later, a
platform-independent black-box hypervisor fuzzer [8] dis-
covered multiple bugs due to its high throughput and multi-
dimension inputs. Fuzzing of virtual devices advanced further
when started considering coverage feedback [9] and guest-
provided data through DMA channels [9], [10], [11].

Despite hundreds of bugs in virtual devices, existing so-
lutions are limited due to two, so far, overlooked challenges.

Intra-Message Dependency: a field in a virtual device
message may be dependent on another field. Guests
communicate with virtual devices through virtual device
messages. Each virtual device message follows a given
message structure and encodes message fields that have
different semantics, e.g., a four-byte scalar or a pointer.
Particularly, a field may be dependent on another field. For
example, a bit in a data field may tell a virtual device the
type of pointer field. Virtual device fuzzers unaware of the
dependencies are slower in reaching certain code or may
even miss critical functionalities.

Inter-Message Dependency: a message may depend
on a previously issued message. A virtual device message
may modify the internal state of a virtual device and can
be chained to form a sequence of complex interactions. In
a virtual device, two messages might go through different
paths but are entangled by the device-internal state, which

implies an ordered sequence of messages. Mutators unaware
of these dependencies may violate order constraints, which
wastes time and hardware resources.

Our goal is to overcome the two challenges and achieve
both scalability and efficiency in fuzzing virtual devices based
on two observations. First, we notice that source code encodes
message semantics, serving as a reference for message
structures. Widely-used hypervisors (QEMU and VirtualBox)
are open-source, encoding abundant information about how
to interact with virtual devices. Moreover, source code is
amenable to automatic analysis and inherently less labor-
intensive to validate than complex specifications. Second,
well-formed messages exercise more coverage and provide
better feedback to the fuzzer for future mutations.

Our Approach. We introduce a new dependency-aware
virtual device fuzzing framework VIDEZZO (Virtual Device
Fuzzer), which considers both intra-message and inter-
message dependencies.

Lightweight Intra-Message Annotation. To support intra-
message dependencies, we design a novel and lightweight
descriptive grammar. When reviewing the source code, a
security analyst of a virtual device may record intra-message
annotation with our descriptive grammar to allow a fuzzer to
know how to handle intra-message dependencies. We argue
that our lightweight grammar is a good trade-off between the
full grammar implementation from the hardware specification
used in NYX-SPEC and the heuristic-based approach used
in V-SHUTTLE and MORPHUZZ. We semi-automate the
annotation extraction.

Novel Inter-Message Mutators. To handle inter-message
dependencies, we design three new categories of mutators
based on a virtual device message as a mutation atom.
These mutators create a single message or form message
sequences leveraging the genetic nature of fuzzers to provide
consistency (message-level), diversity (sequence-level), and
semantics (group-level). These message-aware mutators not
only self-learn the inter-message dependencies but also keep
the advantages of different mutation granularity.

Based on the above two techniques, we present the
design of VIDEZZO in the following. VIDEZZO has two
parts: VIDEZZO-CORE and VIDEZZO-VMM bindings. The
former manages fuzzing input, parses it into virtual device
messages, and processes these messages according to our
design. The latter, VIDEZZO-VMM, registers targeted vir-
tual devices, initializes the guest VMM without running any
operating system, and dispatches VMM-specific messages.
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VIDEZZO-CORE is VMM-agnostic, while VIDEZZO-VMM
requires customization for each new VMM. The flexible
system design enables the scalability of VIDEZZO.

Importantly, VIDEZZO-CORE enables persistent mode,
avoiding a heavy fork server to improve performance. We
leverage reflective delta-debugging to address side effects
due to the accumulated internal state. Specifically, VIDEZZO
stores all intermediate test cases and supports delta debug-
ging [12] to reduce the collected seeds to a minimal stable
Proof of Concept (PoC).

Compared to previous work, VIDEZZO is both scalable
and efficient. VIDEZZO currently supports two hypervisors,
i.e., QEMU and VirtualBox, four architectures, i.e., i386,
x86 64, AArch32, AArch64, 28 virtual devices in five
device categories, i.e., USB, net, display, audio, and storage,
and reaches competitive coverage faster. VIDEZZO is also
effective in finding bugs. We successfully reproduced 24
existing bugs and found 28 new bugs across diverse bug
types with 1 CVE assigned so far. We have been actively
engaging with the QEMU and VirtualBox communities and
provided 7 accepted patches.

Please scan the following two QR codes to fetch the
paper and the source code of VIDEZZO.

(a) Paper (b) Source
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