
Poster: Foundational Approaches to Formalizing
Cryptography can be both Powerful and Usable

Devon Tuma
Dept. of Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota

tumax040@umn.edu

Nicholas Hopper
Dept. of Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota

hoppernj@umn.edu

INTRODUCTION

As cryptographic protocols and their proofs continue to
become more complex and specialized, methods for verifying
the correctness of security proofs have become more and
more important. Formal verification via proof assistants is one
promising solution to this problem, and a number of systems
have been developed to reason about security in this way.

Our work presents a new framework for verifying security
proofs, taking a foundational approach to representing differ-
ent protocols and computations. We implement our framework
in the Lean programming language, and give a number of
security proofs to demonstrate that our system is both powerful
and usable, with comparable automation to other systems. One
particularly powerful result is an implementation of the general
forking lemma proposed by Bellare and Neven [4], which to
our knowledge is more powerful than any previous rewinding
mechanisms in other systems, and that many would be unable
to even represent in a non-axiomatic way.

MOTIVATION

A wide variety of frameworks have been developed to
reason about cryptographic proofs in formally verified ways,
which all have different pros and cons depending on spe-
cific use cases. Some like EasyCrypt [6], SSProve [7], and
CryptoVerif [8] take a ”top-down” approach that focuses
mainly on high-level functionality and behavior, often using
a custom language and proof system to represent and reason
about computations. Others like FCF [4], CertiCrypt [5], and
CryptHOL [9] take a more ”foundational” approach, building
all constructions from a small computing base with limited
axiomatization. Usually computations in this approach are
represented by a shallow embedding into a more general proof
assistant like Coq and Isabelle. The foundational approach has
significant benefits in terms of flexibility and extensibility, but
has some difficulties in terms of automation and usability.

Additionally, existing foundational systems have a number
of limitations in how they reason about the oracles available to
computations. In FCF for example oracle access is specified by
a single oracle with fixed input and output types. This makes
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it difficult to reason about situations where multiple oracles
are available, e.g. both a coin-flipping oracle and a random
oracle. Considering multiple oracles then requires making
use of dependent product types to index the possible input
and output types, which means that input and output types
of queries aren’t known at compile time and type checking
failure cases must be handled by the end-user. Many systems
overcome this by making random sampling and other oracles
into different objects in their representation, but this both adds
additional cases to proofs and weakens the ability to reason
about both types of oracles at once.

We define a generalized notion of oracle access, where all
the oracles available are parameterized by some indexing set.
This allows for inputs and types to be checked at compile
type, greatly simplifying the process of working with oracle
queries. One especially powerful effect of our approach is
that it allows us to avoid separating probabilistic computation
and other types of oracle access, and this unification allows
us to give stronger semantics for simulating the oracles in a
computation, which is key to defining our generalized forking
mechanism.

However our generalization also presents a number of
significant usability issues, especially in composability, mod-
ularity, and proof complexity. We develop a number of mech-
anisms to handle these issues, including the use of automatic
type coercions, tactic programming, custom induction prin-
ciples. In general our system still requires more developer
work in order to construct back-end foundations, but achieves
comparable proof complexity to other systems in actually
verifying cryptographic protocols, which we demonstrate by
proving the security of multiple different constructions.

DEFINING THE FRAMEWORK

Our framework represents computations and protocols via
a shallow embedding into the underlying proof assistant,
with our basic approach being similar to the one used by
FCF. This means that functions and types in our model of
computations are exactly the same as functions and types
in the underlying language, allowing all of the constructions
and definitions in the underlying language to be used directly
in this representation as well. In particular any lemmas and
theorems proven in the underlying system can be applied



directly without change, avoiding the need to reimplement
functionality in our representation of computations.

We do this by representing computations using free monads,
i.e. an inductively defined type where the monadic return
and bind operations are defined as explicit type constructors.
This is augmented by a single query constructor for querying
one of the available oracles. The set of oracles is specified by
a structure that contains an indexing set for the oracles as well
as the input and output types for each index. Choosing which
oracle to call is then equivalent to providing the corresponding
element of the indexing set. Further constructions like try-fail
operations and while loops are constructed as abstractions on
top of this.

We also define two types of semantics for this system,
generalizing the semantics used in FCF. The first is a deno-
tational semantics that associates a probability mass function
to computations. The probability of an event holding after a
computation is then just the total probability mass of the event.

The other is a small step semantics that allows oracles
to be simulated with some simulation function, potentially
maintaining some internal state as it goes. One example of this
is query logging, which can be implemented by simulating the
queries, using the internal state to track the input and output of
each query. We allow the entire set of oracles to be simulated
at once, but give ways to simulate only a partial subset of
them as well.

IMPLEMENTING THE FRAMEWORK

We give an implementation of our system in the Lean
programming language, with strong integration to the open
source mathlib project [1]. We use mathlib to handle all of
the mathematical foundations of our project, which provides
a large source of existing theory and proofs that can be used
directly in our system. Significant portions of our work were
written as contributions to the mathlib library, separating only
the portions of the project that are strictly cryptographic.

The unified nature of the mathlib library means that the
different semantics and constructions underlying our system
have high interoperability, which makes it easy to transition
between different forms of reasoning.

We also make significant use of features of the Lean
programming language in order to handle usability issues pre-
sented by our generalization. Tactic programming in particular
(a form of meta-programming for proofs) allows us to hide
most low-level complexity from end users. This significantly
increases the complexity of some foundational aspects, but
greatly reduces the complexity of proofs written by end-users.

CRYPTOGRAPHIC CONSTRUCTIONS

To demonstrate the usefulness of our framework we im-
plement a number of different common cryptographic con-
structions. We focus on showing how different parts of the
framework can be used to reduce proof complexity, and em-
phasize readability and familiarity for those without significant
exposure to proof assistants.

Firstly we define symmetric encryption schemes and the
information-theoretic notion of perfect secrecy, and give a
concrete implementation of one-time pad as a specific exam-
ple. We then prove Claude Shannon’s theorem characterizing
perfect secrecy in terms of independent random variables, and
use this to show the security of one-time pad.

Next we construct a general forking lemma based on that
of Bellare and Neven [4], which provides more powerful
semantics than previous implementations in other systems, and
avoids any axiomatization. Recent work [10] has implemented
a rewinding mechanism in EasyCrypt, but their approach is
limited to rewinding an adversary to some specific point and is
limited to a subset of ”rewindable” adversaries. Our approach
allows an algorithm to be forked at an arbitrary query, decided
post-hoc from the resulting output and state after the first
execution, and can be applied to an arbitrary adversary in the
system.

Finally we define the notion of Hard Homogenous Spaces as
proposed by [3] and construct a Schnorr style signature scheme
from them, and use our general forking lemma to give a simple
proof of unforgeability via a reduction to the vectorization
problem for the HHS.

FUTURE WORK

A very useful piece future work would be to develop a
standardized approach to handling game-based security proofs
in the system. One very promising route would be to take the
approach of SSProve [7], which provides high level function-
ality for this. Their system uses a free monad to represent low
level computation, and as they note in their paper it should
be possible to implement a similar framework on top of our
foundational system.
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