
OCTAL: Data Oblivious Programming Language
Biniyam Mengist Tiruye

University of Michigan
btiruye@umich.edu

Lauren Biernacki
University of Michigan

lbiernac@umich.edu

Todd Austin
University of Michigan

austin@umich.edu

Abstract—During the 1970s, a curious set of algorithms called
data oblivious algorithms started to catch the attention of security
research, because of the numerous applications they provided
due to their unique properties. In particular, data-oblivious
algorithms execute independently from their input data. This
means that an attacker can’t learn anything by observing how
these algorithms execute, as these algorithms produce no memory
or control side channels, thereby protecting private data against
various attacks. Programmers, However, avoid these algorithms
because they require a highly stylized form of programming,
resulting in a very error-prone design and implementation
process, in addition to the fact that data-oblivious programs are
much less efficient than their native counterparts. To address
these problems, we present OCTAL (Oblivious, Constant Time,
and Adaptable Language), a high-level domain-specific language
that automates the design and implementation of data-oblivious
programs. OCTAL makes the development of data-oblivious algo-
rithms effortless by moving data-oblivious transformations into
the compiler. OCTAL also facilitates the development of more
efficient data-oblivious algorithms by providing the environment
to easily explore algorithm design spaces with its familiar C++-
like interface. We evaluate Octal using workloads from the VIP-
Bench Benchmark suite and show that OCTAL achieves an
average 3× improvement in development time and an average
37% reduction in lines of code over mechanical data-oblivious
conversion.

I. OCTAL

A. Overview

OCTAL is built on top of C++ with a minimal difference
from traditional C++ syntax and semantics. Private values are
declared using OCTAL’s private data types and data oblivious
transformations are performed on these private types via a
source-to-source transformation of the OCTAL program using
Clang. The only change a programmer needs to make in order
to write an OCTAL program is to specify private data using
these private data types. OCTAL provides custom private types
for all primitive data types.

B. Clang

Clang is a front-end for the C and C++ programming
languages that includes a pre-processor and Lexer, which gen-
erates tokens. These tokens are then processed by a parser and
semantic analyzer, resulting in an Abstract Syntax Tree (AST)
which is an equivalent representation of the source code. The
AST is mostly immutable and it preserves everything from the
source code except comments and some formatting informa-
tion. Therefore, it is a managed representation of the source
code and enables easier source-to-source transformations from
the AST. Finally, the code generation path converts the AST

into LLVM IR. The Clang AST consists of three main base
classes: type, statement, and declaration classes. The type class
represents data types in the language, including built-in types,
pointer types, and array types. The statement class represents
different statements in the language, such as if statements, for
statements, and return statements. The declaration class repre-
sents different kinds of declarations present in the language,
including variable declaration and function declaration. The
AST is composed of one of these classes or their derivatives.
Given this structure, our implementation idea is to traverse the
AST and provide a transformation for each class encountered
in the tree.

C. Source-to-source Transformation

In the compiler, the OCTAL code is transformed into an
AST representation of the program and traversed through to
identify statements to be transformed into data-oblivious im-
plementations. Finally, the transformed program is generated
as a C++ program that is independent of the underlying rep-
resentation of any Privacy Enhanced Computation technology.

1) Declaration Statement Transformation: In order to pre-
serve the secrecy of private values, OCTAL enforces oblivious-
ness rules on variable declarations and assignments. Specifi-
cally, OCTAL traverses through each variable declaration and
assignment and checks whether they violate these rules by, for
example, assigning a private variable to a non-private one. If
that is the case, OCTAL will transform the non-private variable
into the corresponding private type.

2) Conditional Statement Transformation: If-conversion
serves to address conditionally-executed instructions to ensure
that a workload’s execution is independent of its input data.
Specifically, if-statements with input-dependent conditions vi-
olate obliviousness as they introduce data-dependent control
flow in the resultant binary. To make these statements data-
oblivious, they must be transformed through if-conversion,
which removes the control dependencies by predicating the in-
structions within the statement’s basic block. OCTAL achieves
this by using the x86-64 CMOVcc primitive to guard state-
ments inside a condition by their corresponding predicates.

3) Loop Transformation: Loop statements with input-
dependent iterations similarly violate obliviousness as they
introduce data-dependent branches. Specifically, loops with a
variable number of iterations or early-exit conditions must be
transformed.

OCTAL uses a heuristic that, when encountering a loop with
input-dependent iterations, converts the loop to take a fixed



number of iterations. Any condition that previously terminated
the loop is transformed into a Boolean value that predicates
writes to any variables live outside of the loop. If the loop’s
termination condition is not dependent on a secret variable
then no transformation is needed.

4) Access Transformation: Input-dependent memory access
patterns violate obliviousness. These memory patterns often
manifest as array accesses where the index depends on in-
put data. OCTAL checks whether memory accesses violate
obliviousness rules and designate private accesses with an
interface that can be implemented by the underlying PEC.
One such implementation is replacing data-dependent array
accesses with reads and writes to the entire data structure while
only performing the desired update for the index specified by
the non-oblivious operation.

5) Return Transformation: Programs with return statements
based on a secret variable also violate obliviousness as they
introduce time variations based on the input value. In order
to mitigate this, OCTAL defines a private return predicate
at the top of the function and initializes it to false, this
predicate guards the execution of all statements in the function.
A return value variable of the function’s return type is also
defined and set to a zero value. Then whenever a return
statement is detected the value is copied to return value and
the return predicate is updated.

6) Break and Continue Transformation: Break and con-
tinue statements can also violate obliviousness by causing
loops to have variable iterations. To handle break statements,
OCTAL defines a break predicate for each loop and uses it
to guard all statements in the loop body. This predicate is
initialized as false and it is updated to true whenever break
statements are detected. Continues are handled the same way
except continue predicates are defined inside the loop.

II. EVALUATION

A. Workloads

We evaluate OCTAL using workloads from the VIP-Bench
benchmark suite . The VIP-Bench suite is instrumental for
assessing the effectiveness and efficiency of Privacy Enhanced
Technologies (PETs), as it provides both native and data-
oblivious variants of workloads for testing. For our evaluation,
we select four of the native VIP-Bench workloads and convert
them into OCTAL implementations. These workloads require
different types of transformations and consist of different types
of operations.

B. Results

Our investigation into the performance of OCTAL in com-
parison to the mechanical conversion of VIP-Bench workloads
to data-oblivious variants has demonstrated a considerable
advantage in terms of both lines of code and development
time. Specifically, we found that OCTAL achieved an average
reduction in lines of code of 37%, while also providing an
average 13,000x speedup in conversion time. This speedup
in conversion time facilitates the development process up
to 3x on average. These findings indicate that OCTAL is

W
or

kl
oa

d

bubble sort

hamming distance

triangle count

dot product

0% 25% 50% 75% 100%

OCTAL LoC Manual LoC

Fig. 1: Lines of code, Relative to Manual conversion

0

100

200

300

400

500

bubble sort hamming distance triangle count dot product

Octal dev time (s) Manual dev time (s)

Fig. 2: Development time, Relative to Manual conversion

an effective tool for simplifying the development of data-
oblivious algorithms. Figures 1 and 2 visualize the Lines
of Code reduction and Development Time speedup for each
workload.

2


