
Poster: Packing-aware Pruning for Efficient Private
Inference based on Homomorphic Encryption

Parsa Ghazvinian1 Robert Podschwadt2 Prajwal Panzade3 Mohammad H. Rafiei4 Daniel Takabi5

Department of Computer Science, Georgia State University, Atlanta, GA
1pghazvinian1@gsu.edu, 2rpodschwadt1@gsu.edu, 3ppanzade1@student.gsu.edu, 4mrafiei@gsu.edu, 5takabi@gsu.edu

Abstract—Due to the extensive application of machine learning
in a wide range of fields and the necessity of privacy, privacy-
preserving machine learning (PPML) solutions have recently
gained significant traction. One group of approaches relies on
Homomorphic Encryption (HE), which enables us to perform
computation over encrypted data. However, even with state-
of-the-art schemes, HE operations are still significantly slow
compared to their plaintext counterparts and require consid-
erable memory. Therefore, here we propose a framework that
automatically makes an already trained model HE-friendly using
a learning-based method. Then, it performs a packing-aware
pruning method that prunes the model’s parameters in arbitrary
block shape in correspondence with the ciphertext packing
method while maintaining the model’s performance. This allows
for dropping a significant number of HE operations and reducing
latency and memory consumption of the private inference (PI).
We evaluate our method on the LeNet model trained on MNIST;
our results demonstrate that even at a 98% pruning ratio, the
model performs almost the same as the baseline model. At the
same time, the number of required HE operations is reduced by
a factor of 15 which implies 9.63 and 4.04 factors of reduction
in the latency and the required memory of PI.

Index Terms—Packing-Aware Pruning, Private Inference,
Privacy-Preserving Machine Learning, Homomorphic Encryp-
tion

I. INTRODUCTION

Machine learning as a service (MLaaS) has become the
predominant solution for complex computations of machine
learning models. However, privacy concerns hinder the pre-
vailing adoption of MLaaS. Homomorphic encryption allows
performing computation on encrypted data without decryption,
so it is adopted as one of the primary solutions for PPML.
Nevertheless, high memory requirements and latency limit
applying HE solutions to arbitrary models. Pruning the pa-
rameters of a neural network (NN) effectively addresses these
limitations in the plaintext domain. However, conventional
plaintext pruning methods offer minor benefits in the HE
domain, even at high ratios, as they do not consider the
ciphertext packing method[1]. The underlying reason is that
most HE schemes perform operations in single instruction
multiple data (SIMD) format and pack multiple values inside
one ciphertext on which the operation is performed. An HE
operation can only be skipped if its operand ciphertext is all-
zero, but regular pruning methods introduce zeros in random
locations, so typically, some non-zero values reside in cipher-
texts, preventing it from dropping corresponding operation;
this could be translated to a minor improvement in latency or

memory consumption. [2] presents a pruning technique that
utilizes HE-friendly structures to identify and prune specific
portions of model parameters. However, their method requires
the client to evaluate the activation functions. [1] utilizes
permutation and expansion of the packed model weights
to prune ciphertext packs. However, their proposed method
requires two transformation operations on input and output
data, and they just evaluated their proposed method on simple
fully-connected networks. Here, we propose a framework that
automatically transforms an already trained model to its HE-
friendly version and performs packing-aware pruning, which
significantly reduces the number of HE operations, latency, and
memory consumption, and performs the PI non-interactively.

II. THE PROPOSED METHODOLOGY

Let the ”original model” be the model trained on plaintext
data; our method has two steps to identify the HE-friendly
packing-aware pruned version of it with comparable accuracy
and then perform PI on it. We describe these steps in the
followings:

A. Step 1. Making the Original Model HE-Friendly
In this step, all max-pooling layers are converted to average

pooling with the same window size and strides, one at a time,
starting with the latest one to the first. After the conversion
of each pooling layer, we retrain the afterward layers a few
epochs, then fine-tune the whole model with a relatively
small learning rate to recover the accuracy loss imposed by
replacements. We start from the latest max-pooling layer since
it would produce a lower propagated error than if we started
from the first one. Similarly, the activation layers are updated
starting from the latest layer; we replace each with a trainable
polynomial with a pre-defined degree or a square function. In
the case of polynomials, to obtain the polynomial parameters
(i.e., polynomial multipliers) automatically, we only train them
as trainable model parameters for a few epochs, with relatively
small magnitude initial weights and a small learning rate. Next,
we fine-tune the whole model with a small learning rate (in
the case of the square function, only the fine-tuning step is
required). The outcome of step 1 is a HE-friendly version of
the “original model”(Fig1a).

B. Step 2. Packing-Aware Pruning
Zhu et al. [4] propose an over-training pruning method

using a binary gradient mask to enforce zeroing low-magnitude



1

2

3

4

1 2 3 4 5

1

2

3

4

1

2

3

4

5

. . .

1

2

3

4

1

2

3

. . .

A B C D

1

2

3

4

5

1 2 3 4

1

2

3

4

1 2 3

𝑾𝐴𝐵
ℎ𝑒𝑓

𝑾𝐵𝐶
ℎ𝑒𝑓 𝑾𝐶𝐷

ℎ𝑒𝑓

(a) Original/He-Friendly

1

2

3

4

1 2 3 4 5

1

2

3

4

1

2

3

4

5

. . .

1

2

3

4

1

2

3

. . .

A B C D

1

2

3

4

5

1 2 3 4

1

2

3

4

1 2 3

𝑾𝐴𝐵
𝑝𝑟𝑛

𝑾𝐵𝐶
𝑝𝑟𝑛 𝑾𝐶𝐷

𝑝𝑟𝑛

1

2

3

4

1 3 5

1

2

3

4

1

3

5

. . .

1

2

4

1

3

. . .

A B C D

1

3

5

1 2 4

1

2

4

1 3

𝑾𝐴𝐵
𝑝𝑟𝑛

𝑾𝐵𝐶
𝑝𝑟𝑛 𝑾𝐶𝐷

𝑝𝑟𝑛

(b) Pruned model with(left)/ without zeroed weights (right)

Fig. 1: Example fully-connected layer’s pruning process with pruning blocks to be weight columns

weights gradually until it achieves a predefined target sparsity.
By defining a block constraint to this method which is im-
plemented by the TensorFlow Model Optimization toolkit1,
we are able to prune the weight matrix in any arbitrary
block shape (block pruning), then by matching it with the
ciphertext packing, we perform an effective packing-aware
pruning. Based on our packing method (described in II-C), we
set the block shape equal to the weight matrix columns in a
fully-connected layer, which implies pruning the neurons. This
consequently prunes the rows of the next layer’s weight matrix
(i.e., outgoing connections of the pruned neuron) (Fig1b). We
convert convolution layers into the equivalent fully-connected
layers to leverage the same pruning method for convolution
layers. In this case, the transformed weight matrix’s columns
are equivalent to the convolution operation’s filters, which
means filter pruning. Finally, we drop the pruned (zeroed)
columns (filters) from the model and fine-tune it again to
recover the resulting accuracy loss, so we end up with a
compressed version of the pruned model (Fig1b) ready for
PI.

C. Step 3. Private Inference
We assume the model is plaintext and the input data is

encrypted for PI. We adopt the batch packing technique
proposed by [3] in which we group the data into batches of
multiple instances and pack the same feature of every instance
into a ciphertext. This means the number of ciphertexts is equal
to the number of features. We should also encode plain values
into plaintext since we can only perform operations between
ciphertexts and ciphertexts or ciphertexts and plaintexts. We
take the HE-friendly packing-aware pruned model of step 2
and extract the weights and layer configurations, to perform PI.
We implement the algorithms for PI using the HE primitives.

III. EXPERIMENTS

We evaluate our method on the LeNet trained on the MNIST
dataset, which originally contains three convolution layers and

1https://www.tensorflow.org/model optimization/api docs/python/tfmot/
sparsity/keras/prune low magnitude

one fully-connected layer. As demonstrated in Table I, the
model has almost the same performance as the baseline model
even at 98% sparsity; while the number of HE operations is
reduced by a factor of 15, it consequently reduces the latency
and the required memory of PI by factors of 9.63 and 4.04,
respectively. We use CKKS implementation of SEAL2 with
128-bit security supporting real numbers.

TABLE I: Results of performing PI of LeNet trained on
MNIST in different sparsities. Unpruned HE-friendly model
is the baseline, testing accuracy, pruning time and PI latency
in seconds, the total number of HE operations, and the memory
required to perform PI in GB.

Sparsity baseline 0.73 0.89 0.98
Accuracy 0.99 0.99 0.98 0.97

Pruning Time - 111 210 393
Latency 1272 502 425 132

HE Operation 8.8e5 2.9e5 2.2e5 5.8e4
Memory 303 166 166 75

REFERENCES

[1] Ehud Aharoni et al. “HE-PEx: Efficient Machine
Learning under Homomorphic Encryption using Prun-
ing, Permutation and Expansion”. In: arXiv preprint
arXiv:2207.03384 (2022).

[2] Yifei Cai et al. “Hunter: He-friendly structured pruning
for efficient privacy-preserving deep learning”. In: Pro-
ceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security. 2022, pp. 931–945.

[3] Nicholas Dowlin et al. “CryptoNets: Applying Neural
Networks to Encrypted Data with High Throughput and
Accuracy”. In: International Conference on Machine
Learning. PMLR. 2016, pp. 201–210.

[4] Michael Zhu and Suyog Gupta. “To prune, or not to
prune: exploring the efficacy of pruning for model com-
pression”. In: arXiv preprint arXiv:1710.01878 (2017).

2https://github.com/Microsoft/SEAL


