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Abstract—Despite their promising experimental performance, in-
trusion detection systems in practice are beset by false positives,
leading to threat alert fatigue. We believe a fundamental cause
of this disconnect is that datasets used to evaluate anomaly
detection systems fail to meet the assumption that the benign
data is representative of normal user behaviors. To analyze this
issue, we present a method to visualize the behaviors system
log datasets and apply it to various commonly-used datasets,
as well as a VM used as one of our workstations to generate
an example log containing realistic user behaviors. We then
present a method to uncover the periodicity of behaviors arising
from workload generators used in certain datasets.

1. Introduction

Recent software attacks and vulnerabilities, e.g., Darkside
ransomware attacks [1] and the Apache Log4j vulnerability
[2], show a need for better attack detection and prevention
systems. Outright prevention of attacks remains a lofty
goal, as the potential attack surface for a system extends
from software vulnerabilities — which are already difficult
to eliminate in large and complex codebases — to social
manipulation, e.g., phishing. Therefore, realtime monitoring
systems to identify potential attacks are necessary to mitigate
potential damage.

Many such intrusion detection systems (IDSs) are based
on the insight of Forrest et al. that anomalous behaviors,
which may be malicious, should be distinguishable from
“normal” behavior [3]. During evaluation, these systems
rely on log datasets being sufficiently representative of both
normal and malicious behavior. If this assumption is not met,
then it is unclear whether or not their evaluated performance
will actually hold up to real data. Notably, all IDSs deployed
in practice typically generate massive amounts of alerts, the
majority of which are false positives, leading to the threat
alert fatigue problem where security analysts are unable to
respond to real attacks in time [6].

Verifying the robustness of benign behaviors is difficult.
For example, a script that repeatedly runs command line
utilities can easily generate non-attack data. However, to
emulate the behaviors of humans, this script would need to
consider the timings at which humans tend to interact with
computers, whether or not a human would actually run that
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Figure 1. 2D Histogram of one-hop provenance neighborhoods vs. time for
the DARPA TC E3 CADETS dataset. Each dot at a set y-value corresponds
to one occurence of a particular provenance neighborhood. Note the clearly
periodic vertical stacks, which indicate repeated groups of highly temporally-
correlated behaviors. The horizontally dense behaviors are due to long-
running daemons or services periodically repeating the same behavior (e.g.,
polling).

sequence of commands with the particular arguments for any
reason, how frequently such commands tend to be run, etc.
This is particularly problematic as it means it is challenging
to realistically assess the quality of the vast majority of data
used to train and evaluate anomaly-based IDSs.

To our knowledge, no work analyzes the behaviors in
benign logs of host IDS datasets. To address this, we present
a method to visualize the behaviors contained in a log dataset
by leveraging data provenance. Our visualization of many
datasets show strong evidence of a workload generator being
used to periodically simulate the same behaviors. Therefore,
we also present a method to algorithmically discover such
periodicity uncovered by our dataset visualization.

2. Methodology

Visualizing Behaviors in a Dataset. We leverage
provenance graphs to structurally represent the relationships
between system objects found in an audit log. Provenance



graphs are directed graphs which encode the flow of causality
in system events; for example, when a process p reads from
a file f , then information in f may affect the behavior of p.
We represent this in a provenance graph by having nodes for
system objects (in this case, p and f ), with an edge from f
to p indicating f may affect the behavior of p.

Directly visualizing a provenance graph is an unfeasible
way to understand a log dataset due to the sheer size of
these graphs. Typical system logs are very large, generating
hundreds of gigabytes per day containing millions of events
[5]. The provenance graphs built from these logs are thus
also very large, easily also containing millions of nodes and
edges.

To reduce the information found in a provenance graph
to a more human-digestible format focusing specifically on
the number of unique behaviors contained in the log, we
instead focus on one-hop provenance neighborhoods. For
each node in a provenance graph with at least one outgoing
edge, we can construct a neighborhood, or subgraph, rooted
at that node containing each outgoing edge from that node
and edge’s other node. We choose not to include leaf nodes
with no outgoing edges to minimize visual noise, as these
nodes will already be included as leaves of at least one other
neighborhood. We place each one-hop neighborhood into
an equivalence class based on the neighborhood’s structure
(i.e., number of children) and the names of each object
in the neighborhood (i.e., the file path for files, the path
of the running program for processes, and the address for
sockets). If a particular equivalence class occurs less than
some threshold number of times (we choose five by default),
then we instead mark these neighborhoods as “outliers” to
reduce the noise caused by extremely infrequent behaviors.

We can directly plot the neighborhood equivalence class
versus time for every node in the provenance graph to
visualize when specific behaviors occur. However, this loses
frequency information if many instances of one behavior
occur in a short timespan, as we cannot distinguish one dot
from many dots at the same point. Therefore, we instead plot
a 2D histogram of the neighborhoods vs. time to additionally
show the corresponding frequency information.

Figure 1 is an example neighborhood plot for the DARPA
Transparent Computing Engagement 3 (DARPA TC E3)
CADETS dataset. We see strong evidence of a workload
generator being used to generate benign data for this dataset,
as we mostly see either long-running services or behaviors
that are highly temporally correlated to other behaviors.
While long-running services are natural to any system, only
having highly temporally-correlated behaviors is evidence
that some reptitive script is being fired on a timer to generate
log data.

Analyzing Periodicity in the Neighborhood Plot. Many
datasets, such as E3 CADETS shown in Figure 1, show
clear evidence of a workload generator when viewed by a
human. We next show how to algorithmically demonstrate
this evidence by finding periodicity in the neighborhood plot.
We use 2D autocorrelation to discover the periodicity of a
dataset’s behaviors [4]. Autocorrelation correlates a function
with a shifted version of itself; in this case, we correlate
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Figure 2. Average probability that the E3 CADETS neighborhood plot is
not periodic vs time. The spike at 24 hours corresponds to the period we
can visually confirm in Figure 1.

our histograms with shifts in the time axis. Because 2D
autocorrelations output a vector of probabilities per lag, we
take the average probability at each lag to condense this
vector into a single scalar.
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