
Poster: Intellectual Property Infringement
Assessment of Code Language Models

Zhiyuan Yu∗, Yuhao Wu∗, Ning Zhang∗, Chenguang Wang∗, Yevgeniy Vorobeychik∗, Chaowei Xiao†
∗Washington University in St. Louis

†Arizona State University
{yu.zhiyuan, yuhao.wu, zhang.ning, chenguangwang, yvorobeychik}@wustl.edu, xiaocw@asu.edu

Abstract—Recent advances in large language models (LMs)
have facilitated their ability to synthesize programming code.
However, they have also raised concerns about intellectual
property (IP) rights violations. Despite the significance of this
issue, it has been relatively less explored. In this paper, we aim
to bridge the gap by presenting CODEIPPROMPT1, a platform
for automatic evaluation of the extent to which code language
models may reproduce licensed programs. It comprises two key
components: prompts constructed from a licensed code database
to elicit LMs to generate IP-violating code, and a measurement
tool to evaluate the extent of IP violation of code LMs. We
conducted an extensive evaluation of existing open-source code
LMs and commercial products and revealed the prevalence of IP
violations in all these models. Our study provides a testbed for
evaluating the IP violation issues of code generation platforms
and stresses the need for a better mitigation strategy.

Index Terms—Intellectual Property, Code Language Model

I. INTRODUCTION

The recent advancements in large language models such as
GPT-4 have brought about revolutionary changes in the field of
natural language processing. These models have demonstrated
the ability to generate content that closely resembles human-
created materials, leading to the emergence of a new form
of content known as Artificial Intelligence Generated Content
(AIGC). An important application of AIGC is code generation,
however, the use of AI-generated code also raises legal and
ethical concerns. A key issue is the potential violation of IP
rights. As code generative models are trained on open-source
repositories, people found that they can produce programs
that are similar or even identical to existing ones without
compliance with corresponding licenses [1], [2]. As such,
it is likely more concerning that users may be at risk of
inadvertently violating the IP rights of original works.

In this work, we introduce CODEIPPROMPT [3], the first
automated testing framework to evaluate the extent to which
code language models will generate potentially IP-violating
code, enabled by two key functionalities: extracting function
signature and accompanying comments from licensed code to
construct prompts, and measuring the extent of IP violation
with code plagiarism similarity scores.

To conduct a comprehensive evaluation, we collected over
4M real-world licensed repositories to evaluate eight models
across five programming languages. The results showed that
the issue is prevalent for these models, as most of them are

1Project website: https://sites.google.com/view/codeipprompt/.

Source Code
Database

Licensed Source
Files

Prompt Files Code Language
Models

#!/usr/bin/env python
db migrationer
def insert_entry(db, entry):

Generated
Program Files

prompt1.py

// fast inverse square root
float Q_rsqrt(float number)
{

prompt2.c

def load_tf_weights_in_bert(
model, config, tf_checkpoint_path):

prompt3.py

Similarity
Results

 Similarity Analysis

Fig. 1: Workflow of CODEIPPROMPT.

capable of generating code strongly resembling portions of
licensed software within 50 prompted code generations. Our
findings highlight the challenges in mitigating this issue and
the pressing need to reconsider the data used for training.

II. METHODOLOGY

The core design of CODEIPPROMPT is depicted in Fig. 1.
To create a comprehensive dataset for evaluation, we com-
piled a collection of licensed code repositories pbtained
from GitHub. From the sampled licensed code, we extracted
function signatures and accompanying comments to serve as
prompts, and the resulting generated code is subsequently
compared to the original program to calculate similarity scores.
In this work, we only focus on IP infringement of permissive
and copyleft licenses.

A. Constructing Prompts from Licensed Code

Real-world Data as Foundation of Prompts. We used a
three-step data collection process. First, we used the GitHub
REST API to gather information from repositories with vary-
ing licenses and programming languages. Second, we imple-
mented a parser to examine metadata, download repositories,
and categorize entries in a metadata database. Lastly, we
compressed and uploaded resources to cloud storage, post-
processed to filter and extract target programs. As a result,
programs from 4,075,553 open-source repositories hosted on
GitHub with 34 mainstream licenses are collected.
Constructing Prompts from Data. As we focused on func-
tions or classes as units of evaluation, each prompt is limited to
a single function signature and its accompanying comment. To
handle the diverse syntactic structures in various programming
languages and avoid disruption from irrelevant components

TABLE I: Data statistics of the constructed prompts.

Prompts
Total Permissive Weak Copyleft Strong Copyleft

478.7K 190.1K 280.4K

949.3K
C C++ C# Python Java

24.9K 24.9K 126.4K 127.8K 591.6K

Tokens
Avg. Permissive Weak Copyleft Strong Copyleft

13.27.3 13.46.8 13.17.3

13.27.2
C C++ C# Python Java

19.510.6 17.010.1 14.58.3 12.26.6 12.76.5

(e.g., variable names or comments containing keywords), we
compiled various regular expressions to identify elements such
as comments, functions, and classes. With individual lines of
code as units, these regular expressions were used to match
and extract target code snippets while preserving the original
code context. We sampled source files representing copyleft
and permissively licensed code and derived prompts across
five programming languages (i.e. Python, C, C++, C#, Java)
with varying lengths. After removing empty prompts and
those containing special characters, we obtained around 950K
prompts with the statistics summarized in Table I.

B. Benckmarking IP Violation with Similarity Score

Similarity Score Calculation. To identify IP violations, we
adapted and incorporated JPlag [4] and Dolos [5], two of
the most widely recognized code plagiarism detection tools
that have been utilized as expert witness evidence in lawsuits.
Both tools take a set of programs and compare them pairwise,
producing a similarity score ranging from 0 to 1 for each
pair. JPlag uses lexical analysis and string tiling to compare
programs, while Dolos converts them into abstract syntax trees
(ASTs) and calculates similarity based on the coverage of
unique AST fingerprints. Therefore, their generated similarity
scores cover different types of code plagiarism, and we took
the maximum between the two as the result. In this study, we
consider a similarity score > 0.5 as potential plagiarism. It
serves as a quantitative indicator within the framework and
can be adjusted based on individual cases.
Benchmark Metrics for IP Infringement. For each sampled
prompt, ten code generations was conducted for each code
language model. The maximum score was utilized as the
similarity score for the respective prompt. We then performed
bootstrapping by sampling n = 50 code generations 1K times.
Two metrics were used to characterize the models: (1) the
Expected Maximum (EM) similarity calculated by the mean
of the maximum scores from 1K bootstrapped samples; and
(2) the Empirical Probability (EP) measured as the mean
probability of generating code with score > 0.5 at least once in
the samples. In the present context, the EM score measures the
worst-case scenario in which generated code is highly similar
to existing code, while the EP reflects the frequency at which
the model generates potentially IP-violating code.

III. EVALUATION

Using CODEIPPROMPT, we evaluated the real-world risks
of generating IP-violating code on 8 code generation language

TABLE II: Evaluation results with prompts.

Copilot Codex CodeT5-large CodeT5-large-ntp-py
EM 0.620.25 0.640.20 0.110.21 0.920.12
EP 0.64 0.75 0.04 0.99

CodeGen-350M CodeGen-2.7B CodeParrot-110M CodeParrot-1.5B
EM 0.730.15 0.810.22 0.550.23 0.550.22
EP 0.94 0.88 0.53 0.52

models, comprising 6 open-source models and 2 commercial
products. They cover a wide range of architectures includ-
ing GPT-3 (i.e., Copilot and Codex), GPT-2 (i.e., Code-
Parrot), encoder-decoder(i.e., CodeRL), autoregressive trans-
former (i.e., CodeGen), etc. The names of the models under
these frameworks are Copilot, code-davinci-002, CodeParrot-
110M and CodeParrot-1.5B, CodeT5-large and CodeT5-large-
ntp-py, CodeGen-350M and CodeGen-2.7B. In the study, we
followed the original settings of code language models and
employed nucleus sampling with top-p where p = 0.95.

The results are presented in Table II. We observed that
most models can generate potential IP-violating code within 50
generations with a relatively high probability greater than 0.5.
We additionally evaluated ChatGPT built on GPT-3.5, with
the constructed prompts to ask them to act as code generation
models. It achieves EM of 0.660.17 and EP of 0.67. This
performance is similar to the Copilot and Codex models. We
speculate the potential reason is that these models are trained
on similar datasets. The CodeT5-large model exhibits the
lowest similarity scores. Manual qualitative analysis revealed
that this was because many generated code snippets were
not meaningful. In contrast, the CodeT5-large-ntp-py model,
which was fine-tuned on Python programs with additional data,
demonstrated significantly higher EM and EP.

IV. CONCLUSION

We present CODEIPPROMPT, a generalizable platform for
evaluating the extent to which language models can reproduce
learned code, which can result in potential intellectual property
infringement. Using the framework, we analyzed multiple
state-of-the-art models and commercial products, and inves-
tigated potential strategies for addressing the issue. With this
work, we aim to shed light on the landscape of IP protection
in generated code by language models.

ACKNOWLEDGMENTS

This work was partially supported by the NSF (CNS-
1916926, CNS-2238635), ARO (W911NF2010141), and Intel.

REFERENCES

[1] T. Davis, “Copilot emits large chunks of my copyrighted code.” https:
//twitter.com/docsparse/status/1581461734665367554, October 2022.

[2] S. Karpinski, “Copilot autocompletes the fast inverse square root im-
plementation from quake iii.” https://twitter.com/stefankarpinski/status/
1410971061181681674, July 2021.

[3] Z. Yu et al., “Codeipprompt: Intellectual property infringement assess-
ment of code language models,” in International conference on machine
learning, PMLR, 2023.

[4] L. Prechelt et al., JPlag: Finding plagiarisms among a set of programs.
[5] R. Maertens et al., “Dolos: Language-agnostic plagiarism detection in

source code,” J. Comput. Assist. Learn., 2022.

