
Poster: TEEzz – Fuzzing Trusted Applications on
COTS Android Devices

Marcel Busch
EPFL

Aravind Machiry
Purdue University

Chad Spensky
Allthenticate

Giovanni Vigna
UC Santa Barbara

Christopher Kruegel
UC Santa Barbara

Mathias Payer
EPFL

Abstract—Security and privacy-sensitive smartphone appli-
cations use trusted execution environments (TEEs) to protect
sensitive operations from malicious code. By design, TEEs have
privileged access to the entire system but expose little to no insight
into their inner workings. Moreover, real-world TEEs enforce
strict format and protocol interactions when communicating with
trusted applications (TAs), which prohibits effective automated
testing.

TEEzz is the first TEE-aware fuzzing framework capable of
effectively fuzzing TAs in situ on production smartphones, i.e.,
the TA runs in the encrypted and protected TEE and the fuzzer
may only observe interactions with the TA but has no control
over the TA’s code or data. Unlike traditional fuzzing techniques,
which monitor the execution of a program being fuzzed and view
its memory after a crash, TEEzz only requires a limited view
of the target. TEEzz overcomes key limitations of TEE fuzzing
(e.g., lack of visibility into the executed TAs, proprietary exchange
formats, and value dependencies of interactions) by automatically
attempting to infer the field types and message dependencies of
the TA API through its interactions, designing state- and type-
aware fuzzing mutators, and creating an in situ, on-device fuzzer.

Due to the limited availability of systematic fuzzing research
for TAs on commercial-off-the-shelf (COTS) Android devices, we
extensively examine existing solutions, explore their limitations,
and demonstrate how TEEzz improves the state-of-the-art. First,
we show that general-purpose kernel driver fuzzers are ineffective
for fuzzing TAs. Then, we establish a baseline for fuzzing TAs
using a ground-truth experiment. We show that TEEzz outper-
forms other blackbox fuzzers, can improve greybox approaches
(if TAs source code is available), and even outperforms greybox
approaches for stateful targets. We found 13 previously unknown
bugs in the latest versions of OPTEE TAs in total, out of which
TEEzz is the only fuzzer to trigger three. We also ran TEEzz on
popular phones and found 40 unique bugs for which one CVE
was assigned so far.

Index Terms—Fuzzing, Android, TEE, ARM TrustZone

I. INTRODUCTION

Smartphones operate on private user data and perform
sensitive functionality. To defend against various application-
and kernel-level exploits, applications leverage TEEs [3] (e.g.,
ARM TrustZone (TZ)) as an additional hardware-based de-
fense. TEEs enforce the integrity and confidentiality of their
applications. Partially due to recent research that demonstrated
the usefulness of TEE applications [4], [6], called TAs, their
number, as well as their complexity, is steadily increasing,
leading to more TA-based vulnerabilities [1], [2]. Unlike
regular applications, where the vulnerability affects only the
application, a vulnerability in a TA compromises the security
of the entire system, potentially even the secure boot pro-
cess [7].

While the security of these TAs is foundational to the
security of the device, performing effective testing (e.g.,
fuzzing) remains an open challenge. Smartphones ship with the
trusted OS (tOS) and numerous pre-installed TAs, prohibiting
the normal world (e.g., Android) from inspecting their code
at runtime. TA interactions are stateful and use complex
proprietary message formats [5]. The entities in the secure
world (TEE and TAs) are often encrypted and get decrypted
in secure memory at runtime, prohibiting the use of static
analysis-based vulnerability detection techniques. Dynamic
analysis, i.e., fuzzing, is an effective alternative.

There are two principled approaches for fuzzing TAs: re-
hosting through emulation or on-device instrumentation.

Rehosting the TEE in an emulated environment overcomes
the inaccessibility of the TEE’s internal state. PartEmu [5]
rehosts Samsung’s proprietary TEE software stacks. They
rehost the tOS and its TAs, to an emulated system-on-a-chip
(SoC), gaining unrestricted access to the TEE’s internal state.
Limitations to this approach are (1) the reverse engineering
and implementation effort for emulated software and hardware
components, (2) the inaccuracy of these implementations, (3)
the lack of public data sheets, and (4) industry involvement
leading to non-disclosure agreements for existing solutions.

The second approach, on-device fuzzing, mitigates these
limitations and inaccuracies of emulation approaches. How-
ever, it lacks access to the TEE’s internal state and must fall
back to blackbox fuzzing techniques. Unlike typical fuzzing
techniques, which can analyze the binary, system memory, and
executed instructions, an on-device TEE fuzzer must infer bugs
from a far more limited view of the execution. Interactions
with TAs happen through a vendor-provided interface (e.g.,
a driver in the rich OS (rOS), which ultimately generates an
secure monitor call (SMC) to communicate with the secure
world. The only observable execution effects are returned data
(e.g., return values) and the status of the TA.

We present TEEzz, a fuzzing framework for TAs running
on COTS smartphones. TEEzz targets three popular TEE im-
plementations: the Qualcomm Secure Execution Environment
(QSEE), used on Nexus and Pixel devices; TrustedCore (TC),
found on Huawei devices; and the Open Portable Trusted
Execution Environment (OPTEE), the de-facto reference im-
plementation for TZ-based TEEs. The analysis first identifies
the TAs within the TEE and then manually triggers interactions
with them. During these interactions, TEEzz records the data
passed both into and out of the TEE to automatically recon-
struct the message format and complex message and value



dependencies. Lastly, this message format, along with the de-
pendencies of the interaction (i.e., generating a cryptographic
key before it is used for encryption), are fed into our fuzzer.
The fuzzer explores the TA while continuously checking for
liveness and monitoring for crashes.

TEEzz necessitates diverse contributions. First, the complex
and proprietary data structures of TAs require fuzzed inputs
to be well-formed, or else the parsing logic in the tOS will
reject them. Thus, we designed TEEzz as a mutation-based
fuzzer that operates on type- and state-aware seeds generated
from legitimate interactions with TAs. To infer the necessary
knowledge of the API, we design an inference mechanism
that maps high-level abstractions to low-level messages used
to communicate with the TA. TEEzz automatically generates
memory introspection logic for each parameter type of the
exposed interface and then abstracts the interaction proto-
col from the recorded traces. At runtime, we dynamically
instrument this interface, parse the values corresponding to
each type on-the-fly from memory, and save the type-aware
token sequence to disk. The observed type- and state-aware
interactions become the specification for efficient mutation.

Second, we automatically generate type-aware mutators for
the enriched seeds. We convert the type definitions used
by TA-facing interfaces into type-aware mutator plugins for
TEEzz’s mutator engine. While fuzzing, TEEzz leverages
these type-specific mutators to manipulate input tokens.

Third, many TAs are stateful, and value dependencies be-
tween invocations need to be resolved, i.e., a value returned
from one invocation must be used as an input for a future
invocation. Leveraging the previously recorded type-enriched
interaction sequences, which include ingoing and outgoing
data, TEEzz employs a novel value dependency inference
technique to add state-awareness to its seeds.

Finally, TEEzz is the first end-to-end solution capable of
continuously fuzzing TAs on COTS Android devices. Al-
though we use known techniques such as dynamic binary
instrumentation-based introspection (DBII) and semantic re-
construction, the novelty of TEEzz stems from solving tech-
nical challenges and applying these techniques to a restricted
environment of a COTS device with no direct access to secure
world entities. In addition, TEEzz features an extensible type-
aware mutation engine, a state-aware fuzzing paradigm that
considers entire interaction sequences as seeds and resolves
interaction dependencies during runtime. Further, it supports
state reset mechanisms to deterministically build up TA state
to facilitate the reproduction of crashes.

We evaluated TEEzz’s performance in terms of coverage
and bug-finding capabilities in a ground-truth experiment.
For this purpose, we extended the OPTEE platform with (1)
permanently shared memory between client applications (CAs)
and TAs, (2) TA instrumentation to populate the coverage
bitmap, (3) TA instrumentation to collect program counters
during post-processing, and (4) support for TA constructors
to initialize the instrumentation. Due to the non-availability
of related fuzzers, we truthfully replicate the state-of-the-art
based on AFL++ and compare TEEzz against three TA-aware

AFL++ variants. Our results show that TEEzz finds bugs that
are unreachable for existing fuzzers. In fact, TEEzz was the
only fuzzer capable of finding three previously unknown bugs
in OPTEE TAs. Further, we tested TEEzz on 18 TAs covering
four popular Google and Huawei phones. TEEzz successfully
generated enriched seeds, inferred interaction dependencies,
and fuzzed each TA. Across these proprietary targets, TEEzz
successfully found 40 unique bugs that we responsibly re-
ported to the corresponding vendors. One CVE (CVE-2019-
10561) was assigned so far, and we await further replies. Some
of these crashes force the phone into a factory reset—wiping
all user data— to resume normal functionality. In contrast,
others allowed us to extract protected cryptographic keys from
the TEE, a stepping stone to launch brute-force attacks against
a device’s disk encryption.

In summary, our contributions are as follows:
• We developed TEEzz, available at https://github.com/

HexHive/teezz-fuzzer, the first end-to-end automated
fuzzing framework capable of fuzzing TAs on commer-
cially available smartphones;

• an automated, dynamic-analysis-based technique for in-
ferring field types of messages, as well as their depen-
dencies, to facilitate type-aware fuzzing of stateful TAs;

• type and state-aware fuzzing mutators that leverage the
message and dependency information inferred from ana-
lyzing the interactions with the TAs; and

• a thorough evaluation of TEEzz against other state-of-
the-art fuzzing techniques on production TAs.

This poster builds on work accepted for publication at the
44th IEEE Symposium on Security and Privacy.

REFERENCES

[1] Marcel Busch, Johannes Westphal, and Tilo Müller. Unearthing the
trustedcore: A critical review on huawei’s trusted execution environment.
In Yuval Yarom and Sarah Zennou, editors, Proceedings of the Workshop
on Offensive Technologies, WOOT. USENIX Association, 2020.

[2] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. Sok:
Understanding the prevailing security vulnerabilities in trustzone-assisted
tee systems. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), pages 18–20, 2020.

[3] Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. Trusted execution
environments on mobile devices. In Proceedings of the ACM SIGSAC
conference on Computer & communications security (CCS), pages 1497–
1498. ACM, 2013.

[4] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng
Yu, and Trent Jaeger. Trustshadow: Secure execution of unmodified
applications with arm trustzone. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 488–501. ACM, 2017.

[5] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen,
Michael Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent
Simon, Hayawardh Vijayakumar, et al. Partemu: Enabling dynamic
analysis of real-world trustzone software using emulation. In Proceedings
of the 29th USENIX Security Symposium (USENIX Security), 2020.

[6] Jinsoo Jang, Changho Choi, Jaehyuk Lee, Nohyun Kwak, Seongman
Lee, Yeseul Choi, and Brent Byunghoon Kang. Privatezone: Providing
a private execution environment using arm trustzone. IEEE Transactions
on Dependable and Secure Computing, 15(5):797–810, 2018.

[7] Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, An-
tonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel,
and Giovanni Vigna. Bootstomp: on the security of bootloaders in mobile
devices. In Proceedings of the USENIX Security Symposium (USENIX
Security), 2017.

https://github.com/HexHive/teezz-fuzzer
https://github.com/HexHive/teezz-fuzzer

	Introduction
	References

