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Abstract—The Rust programming language comes with 

memory safety by default due to its unique Ownership and 
Borrowing System (OBS). But Rust provides only limited 
possibilities to restrict interfaces at compile time so that they 
only accept well-formed input. To increase Rust’s capabilities to 
precisely specify valid inputs, we propose the introduction of 
refinement types to Rust which can be checked by SMT solvers. 
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I. INTRODUCTION 

Many, if not most, common security vulnerabilities are 
due to different forms of memory corruption, like buffer 
overflow, use after free, and race conditions [1]. These are all 
addressed by Rust’s unique Ownership and Borrowing System 
(OBS). It ensures, at compile time, that resources are always 
freed correctly, and manages access to them. 

However, OBS cannot prevent attackers from providing 
malformed inputs to a program. This can be resolved by 
theorem provers. They use elaborate type systems like 
dependent types to be able to specify and prove, again at 
compile time, arbitrary properties of values. This makes 
precise specifications for well-formed inputs possible and 
enables proving the correctness of programs. By combining 
OBS and dependent types, we get both memory safety and 
trusted interfaces. 

Unfortunately, dependent types are undecidable and 
difficult to use. Refinement types are a subsystem of dependent 
types which can mostly be decided by SMT solvers and are 
easier to use since they resemble set-builder notation. 

We propose to integrate a version of refinement types to 
Rust to enable programmers to formally specify programs 
with high security requirements and automatically check their 
correctness while keeping the complexity moderate. 

II. THE RUST OWNERSHIP AND BORROWING SYSTEM 

A. Ownership 

In most programming languages, the programmer can 
freely create resources, having then the responsibility to drop 
the resources after the last use. Rust instead has the concept of 
ownership: Each resource is bound to exactly one name, 
which owns the resource and has the responsibility to drop it 
at some point, usually when the name falls out of scope. This 
concept is also found in C++ as Resource Acquisition Is 
Initialization (RAII). 

To prevent a drop, a resource may be moved, i.e., bound to 
a new name. Access rights and drop responsibilities are then 

transferred to the new name and the old one may not be used 
anymore. This is enforced at compile time. 

B. References and Mutual Exclusion Principle 

Rust provides references for temporary access to data 
without moving values. They have to follow mutual exclusion, 
i.e., mutations to a value are only allowed if an exclusive 
reference is held, of which only one may exist at any time. The 
owner of the resource is also locked out from access. On the 
other hand, there can be several shared references, but they 
are read-only to prevent race conditions. Also, as long as 
references exist, a value may not be dropped, preventing use-
after-free. 

These rules are enforced by a part of the compiler called 
the borrow checker. It uses lifetime analysis to determine if a 
reference or a value may be accessed in the future. Since 
lifetime analysis is undecidable, there are also dynamic 
versions of the references that enforce mutual exclusion at 
runtime. 

III. REFINEMENT TYPES 

For some type 𝑇 and some predicate 𝑃, a 𝑃-refinement of 
𝑇 is a type {𝑡 ∶ 𝑇 | 𝑃(𝑡)} consisting of all those values of type 
𝑇 that satisfy the predicate. Refinement types in general are 
not decidable. However, one can restrict the predicates to 
SMT formulas, which can be decided by corresponding 
solvers. Those formulas can involve real numbers, integers, 
lists, and sets, and some basic operations on them, as well as 
symbols for uninterpreted functions. Refinement types with 
SMT formulas as predicates are also called liquid types [2]. 

A. Advantages 

Rust has support for algebraic data types, i.e., structs and 
enums carrying a payload. This is enough to model many 
behaviors, but it is impossible to specify with them which 
exact values are permissible to cross interface borders so that 
runtime checks are required. Using refinement types, a 
programmer could specify precisely which values are 
permissible as input and output for functions. Refinement type 
systems that already exist, as in Lean [3] or Liquid Haskell 
[4], demand relatively little overhead from the programmer, 
mainly writing down the specification in formal terms. These 
specifications would, as part of the source code and different 
from documentation, not fall out of sync. They would also be 
amenable to proof. Since refinement type checking happens at 
compile time, no runtime performance issues arise from using 
them. 

B. Challenges 

Even though refinement types are much easier to 
understand than full dependent types and familiar syntax can 
be used for logical connectors, there are some subtleties 
programmers have to be aware of. For example, SMT 
formulas may contain multiplication by a constant factor but 
not multiplication of two variables. Uninterpreted function 
symbols can be used, but only a decidable set of measure 
functions are allowed in formulas. Unfortunately, these 
intricacies have to be learned, but intuitive syntax and good 
compiler errors can guide new users and facilitate exploration. 

Rust is notorious for its long compilation times, and 
refinement types would certainly add to that, reducing 



ergonomics, even though modern SMT solvers can already 
handle large inputs. Language servers, continuously watching 
changes and checking them in the background, can make 
programming with refinement types more practical. The Rust 
Analyzer is a widespread language server that could be 
extended to refinement type checking. 

C. Alternatives 

Alternatives to refinement types are just using assertions, 
or contract programming [5]. Contracts make guarantees very 
similar to refinement types but do not have to be SMT 
solvable. They are checked at runtime and usually cause 
exceptions if they fail. They are valuable for their simplicity 
but create runtime overheads, limit optimizations and are a 
hindrance for systems with strong availability requirements. 
Existing frameworks for contract programming in Rust are 
contracts [6] and adhesion [7]. 

IV. FORMALIZED REFINED RUST 

There are already several approaches to formal semantics 
for OBS. Most notable is Polonius [8], a Datalog definition 
which is part of the 2024 roadmap for Rust and is supposed to 
serve as the reference implementation for Rust’s borrow 
checker in the future [9].  Polonius works on the so-called mid-
level intermediate representation (MIR), a program’s control-
flow graph. Refinements can also be checked using control 
flow, which is why we base our research on Polonius. 

Other semantics include the Polonius-inspired Oxide [10], 
which is a minimal, type-driven semantics for OBS, and 
RustSEM [11], a semantics covering large parts of Rust. The 
RustBelt project [12] specifically looked at so-called unsafe 
features of Rust, which must follow OBS but cannot be 
validated by the borrow checker. 

Regarding formal semantics for refinement types, there are 
several examples of implementations of refinement types in 
functional programming languages, like Liquid Haskell [4], 
and ATS [13]. Imperative languages, like Rust, have not yet 
received much attention, one notable exception being Refined 
TypeScript [14]. To date, there is no semantics able to express 
both OBS and refinement types. Linear types, which are 
similar to OBS, are explored in Haskell and ATS, but 
interactions with refinement types are not yet systematically 
analyzed. 

V. FUTURE STEPS 

The immediate future work lies in finding a combined 
formal semantics that models both refinement types and OBS. 
For this, Polonius must be formalized and Refined TypeScript 
made compatible with MIR. Both will then be married into a 
common formal operational or denotational semantics. After 
developing the semantics, we can check basic properties, like 
consistency, and hopefully get insights into interactions 
between OBS and refinements. 

The step after that will be the implementation of a 
refinement checker according to the specified semantics. 
Rust’s annotation system makes it possible to seamlessly 
integrate refinements into the surface syntax, but external tool 
registration is not yet stable [15]. The control-flow checking 
requires hooking into the compiler after it generates the MIR. 
This is also still unstable [16]. 

Finally, we plan to extend the implementation of the 
checker with refinement type annotations, so that it can verify 
its own correctness. 
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