
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Poster: Towards Refinement Types in Rust

Jasper Gräflich
Secure Systems

Agentur für Innovationen in der Cybersicherheit (Cyberagentur)
Halle, Germany

graeflich@cyberagentur.de
and

Potsdam University
Potsdam, Germany

graeflich@uni-potsdam.de

Abstract—The Rust programming language comes with

memory safety by default due to its unique Ownership and
Borrowing System (OBS). But Rust provides only limited
possibilities to restrict interfaces at compile time so that they
only accept well-formed input. To increase Rust’s capabilities to
precisely specify valid inputs, we propose the introduction of
refinement types to Rust which can be checked by SMT solvers.

Keywords—Rust, programming languages, refinement types,
formal verification

I. INTRODUCTION

Many, if not most, common security vulnerabilities are
due to different forms of memory corruption, like buffer
overflow, use after free, and race conditions [1]. These are all
addressed by Rust’s unique Ownership and Borrowing System
(OBS). It ensures, at compile time, that resources are always
freed correctly, and manages access to them.

However, OBS cannot prevent attackers from providing
malformed inputs to a program. This can be resolved by
theorem provers. They use elaborate type systems like
dependent types to be able to specify and prove, again at
compile time, arbitrary properties of values. This makes
precise specifications for well-formed inputs possible and
enables proving the correctness of programs. By combining
OBS and dependent types, we get both memory safety and
trusted interfaces.

Unfortunately, dependent types are undecidable and
difficult to use. Refinement types are a subsystem of dependent
types which can mostly be decided by SMT solvers and are
easier to use since they resemble set-builder notation.

We propose to integrate a version of refinement types to
Rust to enable programmers to formally specify programs
with high security requirements and automatically check their
correctness while keeping the complexity moderate.

II. THE RUST OWNERSHIP AND BORROWING SYSTEM

A. Ownership

In most programming languages, the programmer can
freely create resources, having then the responsibility to drop
the resources after the last use. Rust instead has the concept of
ownership: Each resource is bound to exactly one name,
which owns the resource and has the responsibility to drop it
at some point, usually when the name falls out of scope. This
concept is also found in C++ as Resource Acquisition Is
Initialization (RAII).

To prevent a drop, a resource may be moved, i.e., bound to
a new name. Access rights and drop responsibilities are then

transferred to the new name and the old one may not be used
anymore. This is enforced at compile time.

B. References and Mutual Exclusion Principle

Rust provides references for temporary access to data
without moving values. They have to follow mutual exclusion,
i.e., mutations to a value are only allowed if an exclusive
reference is held, of which only one may exist at any time. The
owner of the resource is also locked out from access. On the
other hand, there can be several shared references, but they
are read-only to prevent race conditions. Also, as long as
references exist, a value may not be dropped, preventing use-
after-free.

These rules are enforced by a part of the compiler called
the borrow checker. It uses lifetime analysis to determine if a
reference or a value may be accessed in the future. Since
lifetime analysis is undecidable, there are also dynamic
versions of the references that enforce mutual exclusion at
runtime.

III. REFINEMENT TYPES

For some type 𝑇 and some predicate 𝑃, a 𝑃-refinement of
𝑇 is a type {𝑡 ∶ 𝑇 | 𝑃(𝑡)} consisting of all those values of type
𝑇 that satisfy the predicate. Refinement types in general are
not decidable. However, one can restrict the predicates to
SMT formulas, which can be decided by corresponding
solvers. Those formulas can involve real numbers, integers,
lists, and sets, and some basic operations on them, as well as
symbols for uninterpreted functions. Refinement types with
SMT formulas as predicates are also called liquid types [2].

A. Advantages

Rust has support for algebraic data types, i.e., structs and
enums carrying a payload. This is enough to model many
behaviors, but it is impossible to specify with them which
exact values are permissible to cross interface borders so that
runtime checks are required. Using refinement types, a
programmer could specify precisely which values are
permissible as input and output for functions. Refinement type
systems that already exist, as in Lean [3] or Liquid Haskell
[4], demand relatively little overhead from the programmer,
mainly writing down the specification in formal terms. These
specifications would, as part of the source code and different
from documentation, not fall out of sync. They would also be
amenable to proof. Since refinement type checking happens at
compile time, no runtime performance issues arise from using
them.

B. Challenges

Even though refinement types are much easier to
understand than full dependent types and familiar syntax can
be used for logical connectors, there are some subtleties
programmers have to be aware of. For example, SMT
formulas may contain multiplication by a constant factor but
not multiplication of two variables. Uninterpreted function
symbols can be used, but only a decidable set of measure
functions are allowed in formulas. Unfortunately, these
intricacies have to be learned, but intuitive syntax and good
compiler errors can guide new users and facilitate exploration.

Rust is notorious for its long compilation times, and
refinement types would certainly add to that, reducing

ergonomics, even though modern SMT solvers can already
handle large inputs. Language servers, continuously watching
changes and checking them in the background, can make
programming with refinement types more practical. The Rust
Analyzer is a widespread language server that could be
extended to refinement type checking.

C. Alternatives

Alternatives to refinement types are just using assertions,
or contract programming [5]. Contracts make guarantees very
similar to refinement types but do not have to be SMT
solvable. They are checked at runtime and usually cause
exceptions if they fail. They are valuable for their simplicity
but create runtime overheads, limit optimizations and are a
hindrance for systems with strong availability requirements.
Existing frameworks for contract programming in Rust are
contracts [6] and adhesion [7].

IV. FORMALIZED REFINED RUST

There are already several approaches to formal semantics
for OBS. Most notable is Polonius [8], a Datalog definition
which is part of the 2024 roadmap for Rust and is supposed to
serve as the reference implementation for Rust’s borrow
checker in the future [9]. Polonius works on the so-called mid-
level intermediate representation (MIR), a program’s control-
flow graph. Refinements can also be checked using control
flow, which is why we base our research on Polonius.

Other semantics include the Polonius-inspired Oxide [10],
which is a minimal, type-driven semantics for OBS, and
RustSEM [11], a semantics covering large parts of Rust. The
RustBelt project [12] specifically looked at so-called unsafe
features of Rust, which must follow OBS but cannot be
validated by the borrow checker.

Regarding formal semantics for refinement types, there are
several examples of implementations of refinement types in
functional programming languages, like Liquid Haskell [4],
and ATS [13]. Imperative languages, like Rust, have not yet
received much attention, one notable exception being Refined
TypeScript [14]. To date, there is no semantics able to express
both OBS and refinement types. Linear types, which are
similar to OBS, are explored in Haskell and ATS, but
interactions with refinement types are not yet systematically
analyzed.

V. FUTURE STEPS

The immediate future work lies in finding a combined
formal semantics that models both refinement types and OBS.
For this, Polonius must be formalized and Refined TypeScript
made compatible with MIR. Both will then be married into a
common formal operational or denotational semantics. After
developing the semantics, we can check basic properties, like
consistency, and hopefully get insights into interactions
between OBS and refinements.

The step after that will be the implementation of a
refinement checker according to the specified semantics.
Rust’s annotation system makes it possible to seamlessly
integrate refinements into the surface syntax, but external tool
registration is not yet stable [15]. The control-flow checking
requires hooking into the compiler after it generates the MIR.
This is also still unstable [16].

Finally, we plan to extend the implementation of the
checker with refinement type annotations, so that it can verify
its own correctness.

ACKNOWLEDGMENT

I thank my advisor Prof. Dr. Christoph Kreitz (Potsdam
University) for helping me to get on the path to research, and
my coworkers at Cyberagentur, giving me time and support
for my project, especially Dr. Sebastian Jester. Also, thanks to
Stefanie Djohan for her help in my design-related questions.

REFERENCES

[1] Gavin Thomas, “A proactive approach to more secure
code,” [Online]. Available: https://msrc.microsoft.com/
blog/2019/07/a-proactive-approach-to-more-secure-
code/

[2] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala,
“Liquid Types,” pp. 159–169, 2008, doi:
10.1145/1375581.1375602.

[3] Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer, “The Lean
theorem prover,” 2015.

[4] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S.
Peyton-Jones, “Refinement types for Haskell,” in
Proceedings of the 19th ACM SIGPLAN international
conference on Functional programming, 2014, pp.
269–282.

[5] Richard J. Mitchell and James C. McKim, “Design by
Contract, By Example,” in International Conference on
Software Technology: Methods and Tools, 2001.

[6] karroffel, contracts. [Online]. Available: https://
gitlab.com/karroffel/contracts

[7] Erich Gubler, adhesion-rs. [Online]. Available: https://
github.com/erichdongubler/adhesion-rs

[8] Niko Matsakis. “An alias-based formulation of the
borrow checker.” https://smallcultfollowing.com/
babysteps/blog/2018/04/27/an-alias-based-formulation-
of-the-borrow-checker/ (accessed Apr. 6, 2023).

[9] N. M. Josh Triplett. “Rust Lang Roadmap for 2024.”
https://blog.rust-lang.org/inside-rust/2022/04/04/lang-
roadmap-2024.html (accessed Apr. 6, 2023).

[10] Aaron Weiss, Olek Gierczak, Daniel Patterson, and
Amal Ahmed, “Oxide: The Essence of Rust,” arXiv
preprint arXiv:1903.00982, 2021.

[11] Shuanglong Kan, Zhe Chen, Davin Saán, Shang-Wei
Lin, and Yang Liu, “An Executable Operational
Semantics for Rust with the Formalization of
Ownership and Borrowing,” arXiv preprint
arXiv:1804.07608, 2020.

[12] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer,
“RustBelt: Securing the foundations of the Rust
programming language,” Proceedings of the ACM on
Programming Languages, vol. 2, POPL, pp. 1–34,
2017.

[13] H. Xi, The ATS Programming Language. Citeseer.
[14] P. Vekris, B. Cosman, and R. Jhala, “Refinement types

for TypeScript,” in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 2016, pp. 310–325.

[15] Rust Team. “Tracking issue for #![register_tool].”
https://github.com/rust-lang/rust/issues/66079

[16] Rust Team. “The Rust Compiler Development Guide:
rustc_driver and and rustc_interface.” https://rustc-dev-
guide.rust-lang.org/rustc-driver.html

