
Poster: Verifiable Fully Homomorphic Encryption
Alexander Viand*, Christian Knabenhans*, Anwar Hithnawi

firstname.lastname@inf.ethz.ch

ETH Zurich

Abstract—Fully Homomorphic Encryption (FHE) is seeing
increasing real-world deployment to protect data in use by
allowing computation over encrypted data. However, the same
malleability that enables homomorphic computations also raises
integrity issues, which have so far been mostly overlooked. While
FHE’s lack of integrity has obvious implications for correctness,
it also has severe implications for confidentiality: a malicious
server can leverage the lack of integrity to carry out interactive
key-recovery attacks. As a result, virtually all FHE schemes and
applications assume an honest-but-curious server that does not
deviate from the protocol. In practice, however, this assumption
is insufficient for a wide range of deployment scenarios. While
there has been work that aims to address this gap, these have
remained isolated efforts considering only aspects of the overall
problem and fail to fully address the needs and characteristics
of modern FHE schemes and applications. In this poster, we
show the shortcomings of existing FHE integrity approaches,
and propose a new notion for maliciously-secure verifiable FHE.

We then instantiate this new notion with a range of techniques
(notably using zero-knowledge proofs), analyzing them and eval-
uating their performance in a range of different settings. We
highlight their potential, but also show where future work on
tailored integrity solutions for FHE is still required.

I. INTRODUCTION

Fully Homomorphic Encryption (FHE), which enables com-
putations on encrypted data, has recently emerged into prac-
tice. Thanks to theoretical improvements, and optimizations in
both software and hardware implementations, it is starting to
see use in real-world deployments (e.g., the Microsoft Edge
Password Monitor). Computing on encrypted data inherently
requires malleable ciphertexts (e.g., the addition of two cipher-
texts is also valid ciphertext). This malleability raises the issue
of integrity, as the server can deviate from the computation
requested by the client. This has obvious implications for
correctness, but can also have more severe consequences, al-
lowing a malicious server to carry out key-recovery attacks [1]
and undermining the confidentiality of FHE. So far, most work
on FHE schemes and applications has chosen to side-step this
issue by assuming a weak adversarial model. However, as FHE
is starting to be deployed to protect critical information, we
must move beyond these assumptions to a threat model that
accurately reflects real-world adversaries.

Honest-but-Curious Assumption. Historically, the FHE re-
search community has extensively made use of the assumption
that the server running an FHE application would be honest-
but-curious, rather than actively malicious. This assumption

*Equal contribution

may be reasonable in some deployment scenarios (e.g., when
FHE is used by trusted institutions cooperating on their own
data). However, the necessity to trust the server to this extent
is very limiting to the scope of application scenarios, since
a violation of the assumption threatens not only correctness
but also confidentiality. In addition, this weak threat model
does not protect against bugs in the application code, or
temporary breaches of an otherwise trusted party. A class
of attacks known as reaction attacks exploits the interactive
nature of real-world deployments to recover the FHE secret
key. These exploit the fact that a server can craft a ciphertext
that fails to decrypt correctly for certain secret keys, using
the client’s reaction or lack thereof as an oracle. Practical
key-recovery attacks have been developed for all major FHE
schemes [2]. Therefore, there is an urgent need to strengthen
FHE to maintain strong guarantees in the context of these
attacks.

Existing FHE Integrity Approaches. In order to remediate
these attacks, a line of approaches has ported techniques
from Verifiable Computation (VC) to FHE, with the aim to
guarantee that a function was correctly executed [3]. While
some of these approaches are concretely efficient, there is
a significant gap between the assumptions made by existing
work and the way state-of-the-art FHE schemes are used
in practice. In particular, existing schemes can only tolerate
adversaries limited to verification oracles, much weaker than
the decryption oracles present in most real-world settings.
While these approaches give robust correctness guarantees,
they do not offer significantly stronger confidentiality guar-
antees compared to standard FHE.

Another line of works aims to construct FHE schemes that
achieve indistinguishability against chosen ciphertext attacks
(IND-CCA1) [2]. These schemes remain secure even in the
presence of decryption oracles. Unfortunately, many of these
constructions assume the presence of cryptographic primitives
even stronger than FHE, and/or are too inefficient to implement
in practice. Additionally, IND-CCA1-security does not imply
any correctness guarantee, which is needed for real-world FHE
applications.,

Finally, approaches from both of these lines of work are
often not compatible with state-of-the-art FHE schemes as
implemented and used in practice (and on their way to
standardization), and thus of limited value for practitioners.

Contributions. This work is the first to consider integrity in
the context of real-world FHE deployment settings, addressing

1



ZKP System TOY SMALL MEDIUM
Setup Prover Verifier Setup Prover Verifier Setup Prover Verifier

FHE [No Integrity] 0.003 s 0.002 s 0.001 s 0.807 s 0.011 s 0.009 s 1.053 s 0.014 s 0.010 s
Bulletproofs - 7569.799 s 552.079 s - 3957.122 s 278.433 s - 8697.741 s 575.792 s

Aurora - 1554.589 s 32.880 s - 3750.477 s 79.323 s - 5028.085 s 106.345 s
Groth16 198.640 s 195.941 s 0.002 s 479.222 s 472.711 s 0.002 s 642.470 s 633.741 s 0.002 s

Rinocchio1 0.485 s 0.320 s 0.096 s 46.700 s 305.000 s 0.153 s 56.90 s 443.000 s 0.181 s
TEE2 (Intel SGX) - 0.154 s - - 1.100 s - - 1.260 s -

Table I: Performance results for different instantiations of verifiable Fully Homomorphic Encryption.
For FHE, Setup = Key Generation, Prover = Homomorphic Computation and Verifier = Encryption/Decryption

the issue of FHE integrity holistically. This work aims to both
highlight the issues arising from the gap between existing
notions and real-world scenarios, and to propose efficient
instantiations of a new robust notion for FHE integrity that
effectively addresses these challenges.

II. MALICIOUSLY-SECURE VERIFIABLE FHE

We define a new notion of integrity for FHE that captures
real-world FHE deployment settings, addressing the issues
we identified in our analysis. Existing notions are usually
ported from conventional cryptography to FHE in a black-box
manner, and often fail to address the specific characteristics of
modern FHE schemes and applications. In contrast, we present
a natural clean-slate notion of verifiable FHE that composes
the standard notion of FHE with modular integrity properties.

Verifiable FHE. Our core notion of verifiable FHE (vFHE)
can be seen at the intersection of the notion of IND-CCA1-
security for FHE, together with the notion of correctness in the
VC literature (against a stronger, IND-CCA1-style adversary).
On top of this core notion, we define additional modular
integrity notions, outlined below (formal definitions can be
found in the extended version of our preprint [4]).

Approximate FHE. Some FHE schemes (e.g., CKKS) operate
over floating point numbers, and only guarantee approximate
correctness. While more efficient than exact FHE schemes for
many use cases (e.g., machine learning), these schemes have
been shown to offer even weaker confidentiality guarantees,
and integrity is harder to achieve for these schemes.

Server Inputs. Real-world FHE applications are usually not
restricted to an outsourced computation setting, but often
operate in a client-server 2-party setting, where the server
provides input to the computation. These inputs offer a new
attack surface for a malicious server, which is why we model
them explicitly in our definitions.

Plaintext Inputs. Modern FHE schemes support ciphertext-
plaintext operations, which are much faster than their
ciphertext-ciphertext equivalents, and are heavily used in prac-
tice. We explicitly model these in our notions, which allows
us to present a simpler generic integrity construction.

Input Predicates. For real-world applications, a client may
want to enforce additional constraints on the server in-

1We use our implementation of the Rinocchio protocol (https://github.com/
MarbleHE/ringSNARK), with our batched-encoding optimization.

2We use our implementation of the FHE-in-TEE paradigm (https://github.
com/MarbleHE/FHE-in-TEE), with our verifiable delegation to CPUs.

puts. These predicates are a natural extension of the well-
formedness predicate for server inputs, which is a necessary
condition to achieve our core vFHE notion.

Server Privacy. We additionally incorporate the idea of circuit
privacy from the FHE world, which states that the client
is not allowed to learn anything besides the output of the
computation. In particular, the server’s input should remain
hidden from the client.

III. INSTANTIATING VERIFIABLE FHE IN PRACTICE

Generic Construction. Previous approaches IND-CCA1-
secure FHE relied either on very strong cryptographic con-
structs (e.g., indistinguishability obfuscation), on non-standard
complexity assumptions (later shown not to hold in practice),
or on an expensive double-encryption paradigm, Somewhat
surprisingly, we show that all of our notions (which include
IND-CCA1-security) can be achieved by combining any FHE
scheme with a generic zero-knowledge proof (ZKP) system.
This much simpler construction is made possible by taking ad-
vantage of the IND-CPAD-security achieved by most modern
FHE schemes, and of the additional specificities of real-world
FHE applications (e.g., plaintext inputs).

Concrete Constructions. We instantiate our notion of
maliciously-secure verifiable FHE using a variety of different
state-of-the-art ZKP systems. In the process, we highlight a
series of fundamental challenges in bringing together FHE
and ZKP systems, including the mismatch between the rings
used in modern FHE schemes and the fields used in the vast
majority of ZKP systems. We investigate several approaches
to bridge this gap, and explore the trade-offs offered by
novel ring-based ZKPs. We evaluate our instantiations on
a variety of different workloads and compare them to a
hardware-attestation–based approach (FHE-in-TEE) as a point
of comparison. We show that verifiable FHE can be practical,
but also highlight the need for future work on ZKP systems
specifically designed for the unique characteristics of FHE.

REFERENCES

[1] I. Chillotti, N. Gama, and L. Goubin, “Attacking FHE-based applications
by software fault injections,” Cryptology ePrint Archive, 2016.

[2] P. Fauzi, M. N. Hovd, and H. Raddum, “On the IND-CCA1 security of
FHE schemes,” Cryptology ePrint Archive, 2021.

[3] S. Chatel, C. Knabenhans, A. Pyrgelis, and J.-P. Hubaux, “Verifiable
encodings for secure homomorphic analytics,” July 2022.

[4] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable fully homo-
morphic encryption.” https://arxiv.org/abs/2301.07041v1, 2023. Extended
version (v1).

2

https://github.com/MarbleHE/ringSNARK
https://github.com/MarbleHE/ringSNARK
https://github.com/MarbleHE/FHE-in-TEE
https://github.com/MarbleHE/FHE-in-TEE

	Introduction
	Maliciously-Secure Verifiable FHE
	Instantiating Verifiable FHE in Practice
	References

