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Abstract—Modern programs are monolithic, combining code of
varied provenance without isolation, all the while running on
network-connected devices. A vulnerability in any component
may compromise code and data of all other components. Com-
partmentalization separates programs into fault domains with
limited policy-defined permissions, following the Principle of
Least Privilege, preventing arbitrary interactions between com-
ponents. Unfortunately, existing compartmentalization mecha-
nisms target weak attacker models, incur high overheads, or
overfit to specific use cases, precluding their general adoption.
The need of the hour is a secure, performant, and flexible
mechanism on which developers can reliably implement an
arsenal of compartmentalized software.

We present SecureCells, a novel architecture for intra-
address space compartmentalization. SecureCells enforces per-
Virtual Memory Area (VMA) permissions for secure and scal-
able access control, and introduces new userspace instructions
for secure and fast compartment switching with hardware-
enforced call gates and zero-copy permission transfers. Secure-
Cells enables novel software mechanisms for call stack main-
tenance and register context isolation. In microbenchmarks,
SecureCells switches compartments in only 8 cycles on a 5-stage
in-order processor, reducing cost by an order of magnitude
compared to state-of-the-art. Consequently, SecureCells helps
secure high-performance software such as an in-memory key-
value store with negligible overhead of less than 3%.

1. Introduction

Modern software systems are complex but monolithic,
comprising multiple interacting subsystems, incorporating
third-party code like libraries, plugins, or interpreted code,
while interacting over untrusted interfaces including net-
works, shared memory, file systems, or user input. The
lack of isolation between the components of a monolithic
program allows vulnerabilities to have far-reaching con-
sequences. An attacker who exploits one component can
corrupt other parts — for example, a buggy Linux driver
can compromise core kernel data structures. The traditional
process abstraction for running monolithic software violates
the Principle of Least Privilege [1] which requires compo-
nents to only have access to the data necessary for their op-
eration. Instead, all code running within a process’ address
space has equal permissions to all data and code regions
allowing attackers to subvert pre-defined interfaces between

components. For example, calls between components can
jump to an arbitrary address bypassing checks on function
call arguments.

Intra-address space compartmentalization allows devel-
opers to isolate components of a program within com-
partments, only granting each compartment permissions to
access their own data. When compromised, a buggy compo-
nent cannot access another component’s data. Conversely, a
component is guaranteed integrity of its private data against
other corrupted compartments. Compartmentalization is a
key defense mechanism that leverages the inherent modular-
ity of code to fortify the cloud [2]and desktop [3] sandboxed
environments, programs with third-party libraries [4]and un-
derpins the design of security-focused microkernel operating
systems [5]. Compartmentalization constrains the negative
effects of the myriad possible faults in software, including
memory safety violations and logic errors, to compartment
boundaries. For example, the Log4Shell exploit (CVE-2021-
44228) which allowed attackers to exfiltrate secrets and
inject arbitrary code in memory-safe programs can be mit-
igated by isolating the vulnerable Log4j framework in a
separate compartment.

The compartmentalization mechanism enforcing the
rules of access and communication between the program’s
components must be secure, performant and flexible. To
be secure, the mechanism must enforce policy-dependent
restrictions on memory accesses and inter-compartment
calls in the face of powerful attackers. Particularly, the
mechanism must prevent compromised compartments from
escalating their memory access rights or from bypassing
inter-compartment call gates. Developers for performance-
and security-critical software such as operating systems
constantly trade off the benefits of protection mechanisms
against their overheads. The mechanism must implement
low overhead checks and operations to support fine-grained
compartmentalization for such programs. Faster compart-
ment switching, for example, enables developers to refactor
programs into smaller compartments with more frequent
compartment switches, improving security while maintain-
ing the same performance. Finally, a flexible mechanism
which is able to support the wide variety of desired com-
partmentalization policies will bolster developer adoption.

Existing compartmentalization mechanisms lack one or
more desirable features, often trading security for perfor-
mance, or flexibility for backward compatibility or im-
plementation simplicity. Traditional, process-based isola-



tion [6], [7]only permits costly, microsecond-scale com-
partment switches. On the other end of the spectrum,
protection-key based mechanisms [8], [9] are performant,
with nanosecond-scale switches, but fail to deter attack-
ers with code-injection capabilities. Mechanisms co-locating
permissions with page-based virtual memory [8], [9], [10]
improve compatibility with existing page-tables but inherit
the limited reach of modern Translation Lookaside Buffers
(TLBs), incurring overheads for programs with large work-
ing sets. Finally, other mechanisms [11] target simpler poli-
cies, such as protecting a single trusted compartment from
an untrusted compartment.

SecureCells achieves the trifecta of secure, flexible,
and high-performance compartmentalization by embedding
compartmentalization into the architectural virtual memory
abstraction. SecureCells proposes i) TCB-maintained VMA-
scale access control, and ii) unprivileged (i.e., userspace) in-
structions implementing securely-bounded compartmental-
ization primitives, with iii) software implementing call gates,
call stacks, and context isolation. Related efforts towards
languages, compilers and libraries for compartmentalization
can extend these benefits to developers by using SecureCells
as the underlying isolation mechanism.

For the first pillar, access control, SecureCells introduces
the first VMA-granular permissions table consolidating per-
missions for all compartments into a single data structure de-
signed for efficient permission lookups. In contrast, previous
mechanisms use per-compartment permission tables with
either duplicate VMA bounds information [12], duplicate
per-page permissions within a VMA [8], [9], or both [10],
[7]. Deduplicating VMA bounds accelerates compartment
switching, eliminating the need to re-load bounds for the tar-
get compartment. VMA-scale permission tracking requires
smaller VMA-based permission lookaside buffers while also
overcoming TLB-reach limits.

For the second pillar, SecureCells accelerates com-
mon compartmentalization operations with novel, low-cost
unprivileged instructions. Particularly, SecureCells is the
first mechanism to allow generic, unprivileged permission
transfer from userspace. SecureCells maintains the integrity
of permissions by bounding the semantics of untrusted
userspace operations to known-safe parameters — the hard-
ware checks the compartment switch instruction to enforce
call gates, and permission transfer instructions to prevent
privilege escalation.

SecureCells’ final pillar leverages the flexibility of soft-
ware for operations where possible without compromising
security or performance (context isolation, call gates and
call stack maintenance). This paper shows the first soft-
ware mechanism for restoring register context following a
compartment switch, necessary for isolating compartment
contexts, without trusting any general-purpose registers.

This poster builds on work accepted for publication at
the 44th IEEE Symposium on Security and Privacy.
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