
Poster: Demystifying Exploitable Bugs in
Smart Contracts

Zhuo Zhang⇤, Brian Zhang†, Wen Xu‡§, Zhiqiang Link
⇤Purdue University, †Harrison High School, ‡Georgia Institute of Technology, §PNM Labs, kOhio State University,

zhan3299@purdue.edu, bzhangprogramming@gmail.com, wen@pnm.xyz, zlin@cse.ohio-state.edu

I. PUBLICATION INFORMATION

Our research will be published in the proceedings of the
International Conference on Software Engineering (ICSE)
2023 [1]. Several media outlets have also covered our findings,
including Week in Ethereum News [2] and an engaging inter-
view with Code4rena [3]. We have made our dataset openly
available to encourage further exploration and academic con-
tributions in this field. Details can be found in our GitHub
repository [4].

II. EXTENDED ABSTRACT

Since the Bitcoin and blockchain technology were intro-
duced in 2008, their market capitalization has experienced an
explosive growth, reaching over $438 billion (as of 5 August
2022) [5]. Nowadays, there exists countless blockchain-based
products and services for anyone to interact with, such as
those in travel, healthcare, finances, and lately virtual reality.
Blockchains such as Ethereum, Solana, and Polygon handle
millions of transactions everyday. High-level programming
languages like Solidity enable the creation and integration
of numerous innovative ideas with blockchains, in the form
of smart contracts. Just like traditional software applications,
smart contracts are composed by developers and hence sus-
ceptible to human errors. Many of them are exploitable.
According to [6], $1.57 billion were exploited from various
smart contracts as of 1 May 2022.

A large body of techniques have been proposed to detect
smart contract vulnerabilities such as reentrancy and integer
overflows, and they can be classified into categories such as
fuzzing, formal verification, and runtime verification. Despite
the success of these techniques, smart contract exploits are
still commonly seen in the wild [7]. This may root at the
fundamental differences between smart contract and traditional
software vulnerabilities.
Differences between Smart Contract and Traditional Soft-
ware Vulnerabilities. For traditional software, security vul-
nerabilities are largely different from functional bugs. The
former has limited forms such as buffer overflow (leading to
control flow hijacking), information leak, and privilege esca-
lation, whereas the latter is very diverse, denoting violations
of domain-specific and even application-specific properties.
Moreover, functional bugs in traditional software usually lead
to incorrect outputs and/or interrupted services, which may
not cause direct security concerns. In contrast, smart con-
tract vulnerabilities are in many cases functional bugs, due

to their unique nature, incorrect outputs in smart contract
usually indicate monetary loss. Finding these vulnerabilities
hence requires checking domain-specific properties, which is
much harder than checking a limited set of general security
properties in traditional software.

Therefore, we consider that it is highly valuable to sum-
marize recent exploitable smart contract bugs to understand
the underlying critical properties. In this research, we study a
large set of 516 exploitable bugs from 167 real-world contracts
reported/exploited in years 2021-2022, and aim to summarize
their root causes and distributions. We collect these bugs from
the highly reputable Code4rena contests [8] (with a total of
462 bugs), which invite individuals and companies from all
over the world to audit real-world contracts by providing
substantial bounties [8], and from various real-world exploit
reports, with a total of 54 exploits. The real-world exploits
account for $256.3 millions monetary loss. In the study, we
answer a few research questions such as how many such bugs
can be detected by existing tools, how difficult is it to detect
such bugs, the root causes of those that cannot be detected by
tools, their consequences, repair strategies, and distributions.
The detailed setup of our study is in §III. Our findginds are
highlighted in the following.

• Although the DeFi community has heavily invested on
protecting their products, the current supply of tools and
human auditor resources have not met the demand.

• Existing techniques rely on simple and general oracles or
hand-coded ones that are project specific. Such oracles
may not be sufficient for functional bugs in general.

• More than 80% exploitable bugs are beyond existing tools
(we call them machine unauditable bugs (MUBs)). This
is largely due to the lack of describing and checking the
corresponding domain-specific properties.

• Majority of exploitable bugs in the wild are hard to find,
including those within and beyond the scope of tools.

• MUBs can be classified to seven categories. Two of
the categories (accounting for 40% of the MUBs) are
project/implementation specific (consequently no general
oracles to detect them). The remaining five categories
have clear symptoms and can be properly abstracted such
that automated oracles may be devised.

• Different types of MUBs have different distributions and
different difficulty levels, with price oracle manipulation
(38%) and privilege escalation most popular in real-world

exploits, and accounting errors most popular in bugs
found during audit contests.

• Different kinds of DeFi projects tend to be prone to
different types of MUBs.

We demonstrate the importance of our findings by our
preliminary success in finding 15 zero-day exploitable bugs
in real-world smart contracts. These bugs could endanger
$22.52 millions funds if exploited. We have been rewarded
with $102, 660 bug bounties for identifying these bugs.

III. DATASET INFORMATION

We collect two datasets of bugs, from the Code4rena
contests and real-world exploit reports.
Code4rena Contests. Code4rena [8] is a highly reputable audit
contest platform. Each Code4rena contest lasts for 3-7 days
and aims to have real-world DeFi projects audited before
official deployment (pre-deployment), for which the developers
of subject projects commit a bounty in the range of $20K to
$1M as incentive. Individuals, companies, and institutes from
all over the world can participate. After the contest, a group
of Code4rena judges (i.e., very experienced auditors elected
by the community) and the project’s developers get together
to inspect the bug reports, where they confirm the valid ones,
classify reports based on root causes, and decide the criticality
level of bugs. Note that each bug is assigned a criticality level:
low, medium, or high, where only high-risk bugs can cause
asset loss (and hence are exploitable) [9]. The final reward is
decided by both the criticality level of the bug and the number
of reports submitted for the bug (more submissions lead to a
lower reward as the bug is easier than others).

We collect and analyze 462 unique high-risk bugs from 113
Code4rena contests hosted between April 2021 and June 2022.
For each case, we inspect the bug report, the faulty contracts
(which are available through Github), and the project’s doc-
umentation. Following the suggestions in Claes et al. [10],
each bug is checked by at least two individual researchers.
Any disagreement will be turned to an additional researcher.
We reach consensus for all cases after the new researcher gets
involved. All our researchers are experienced auditors, having
participated 23 contests from February 2022 to June 2022.
One of them was invited to be a consultant for judges.

Among the 462 surveyed bugs, we identify 341 in-scope
bugs (exploitable by remote users). Table I presents the basic
information of surveyed contests and the in-scope bugs. The
first column presents the categories of on-chain projects,
following the taxonomy by DefiLlama [11], a leading DeFi an-
alytics platform. The description of each category is available
in our supplementary material [4] (§II). Observe that around
$2.8 billions are protected by Code4rena auditing, indicating
the representativeness of the dataset, and $6.7 millions are
committed as bounties.
Real-world Exploits. Our second dataset comprises 54 real-
world exploits, collected from postmortems and bugfix reviews
of real-world exploits from January 2022 to June 2022. These
reports are published by highly-reputable security researchers

TABLE I: Basic information of Code4rena contests. # Cont
and # Vuln denote the numbers of hosted contests and in-scope
bugs, respectively. # Atten denotes the number of auditors
who have attended at least one contest of the corresponding
category, while the total # Atten denotes the total number
of auditors who have ever participated in Code4rena contests.
TVL denotes the overall value of crypto assets deposited in the
corresponding DeFi projects, i.e., the worth of these projects.

Categories # Cont Bounty # Atten # Vuln TVL

Lending 20 $1,145K 180 53 $304.8M
Dexes 13 $1,020K 139 70 $898.9M
Yield 12 $ 970K 193 85 $304.8M
Services 11 $ 532K 123 21 $219.8M
Derivatives 9 $ 525K 123 13 $147.8M
Yield Aggregator 9 $ 365K 124 22 $265.5M
Real World Assets 7 $ 405K 69 10 $ 41.8M
Stablecoins 6 $ 365K 102 7 $364.7M
Indexes 6 $ 215K 101 7 $ 1.0M
Insurance 5 $ 298K 74 19 $ 42.9M
NFT Marketplace 4 $ 266K 126 8 $ 46.6M
NFT Lending 4 $ 230K 108 10 $ 8.2M
Cross Chain 4 $ 250K 81 7 $ 32.0M
Others 3 $ 110K 25 9 $118.3M

Total 113 $6.696M 358 341 $2.797B

(e.g., [12], [13]) and companies (e.g., [14]–[17]). We fol-
low the aforementioned study methodology (for Code4rena
reports). Overall, we identify 44 (out of 54) in-scope bugs.
Specifically, real-world exploits target post-deployment con-
tracts, including real attacks launched against on-chain con-
tracts and caused real asset damage (i.e., attacks), and the
cases in which ethical hackers demonstrated vulnerabilities in
a local off-chain environment and were awarded bug bounties
by the projects (i.e., bug bounties). over $265 million were
lost due to real attacks in the first half of 2022; despite the
substantial auditing efforts paid prior to deployment, there are
still many post-deployment exploitable bugs.

REFERENCES

[1] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” ICSE, 2023.

[2] “Week in ethereum news march 4, 2023.” [Online]. Available: https:
//weekinethereumnews.com/week-in-ethereum-news-march-4-2023/

[3] “Demystifying exploitable bugs in smart contracts with zhuo and
brian.” [Online]. Available: https://shorturl.at/itY04

[4] “Web3bugs.” [Online]. Available: https://github.com/ZhangZhuoSJTU/
Web3Bugs

[5] “Bitcoin market cap.” [Online]. Available: https://coinmarketcap.com/
[6] “The growing rate of defi fund loss.” [Online]. Available: https:

//twitter.com/PeckShieldAlert/status/1520620826613010432
[7] “The nine largest crypto hacks in 2022.” [Online]. Available:

https://blockworks.co/the-nine-largest-crypto-hacks-in-2022/
[8] “Code4rena.” [Online]. Available: https://code4rena.com
[9] “Judging criteria - code4rena.” [Online]. Available: https:

//docs.code4rena.com/awarding/judging-criteria#estimating-risk
[10] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[11] “Defillama.” [Online]. Available: https://defillama.com/
[12] “samczsun.” [Online]. Available: https://twitter.com/samczsun
[13] “pwning.eth.” [Online]. Available: https://twitter.com/PwningEth
[14] “Peckshield.” [Online]. Available: https://twitter.com/peckshield
[15] “Paradigm.” [Online]. Available: https://twitter.com/paradigm
[16] “Certik.” [Online]. Available: https://twitter.com/CertiK
[17] “Immunefi.” [Online]. Available: https://immunefi.com/explore/

https://weekinethereumnews.com/week-in-ethereum-news-march-4-2023/
https://weekinethereumnews.com/week-in-ethereum-news-march-4-2023/
https://shorturl.at/itY04
https://github.com/ZhangZhuoSJTU/Web3Bugs
https://github.com/ZhangZhuoSJTU/Web3Bugs
https://coinmarketcap.com/
https://twitter.com/PeckShieldAlert/status/1520620826613010432
https://twitter.com/PeckShieldAlert/status/1520620826613010432
https://blockworks.co/the-nine-largest-crypto-hacks-in-2022/
https://code4rena.com
https://docs.code4rena.com/awarding/judging-criteria#estimating-risk
https://docs.code4rena.com/awarding/judging-criteria#estimating-risk
https://defillama.com/
https://twitter.com/samczsun
https://twitter.com/PwningEth
https://twitter.com/peckshield
https://twitter.com/paradigm
https://twitter.com/CertiK
https://immunefi.com/explore/

	Publication Information
	Extended Abstract
	Dataset Information
	References

