High-Frequency Trading on Decentralized On-Chain Exchanges

Liyi Zhou *, Kaihua Qin *, Christof Ferreira Torres T, Duc V Le T and Arthur Gervais *

* Imperial College London, United Kingdom Email: liyi.zhou@imperial.ac.uk, kaihua.gin@imperial.ac.uk, a.gervais@imperial.ac.uk
T University of Luxembourg, Luxembourg Email: christof.torres@uni.lu
T Purdue University, United States Email: |e52@purdue.edu

A

MM DEX

Blockchains enable peers to transact without trusting third-party

intermediaries.

Smart contracts are programs stored on the blockchain.

Decentralized exchange (DEXs) allow parties to participate in financial
markets while retaining full custody of their funds.

Liquidity Provider: a market participant that provides liquidity.

Liquidity Taker: a market participant that buys or sells one asset in exchange
for another asset, by taking the liquidity offered by liquidity provider
Automated market maker (AMM) DEXs algorithmically perform market

making using smart contracts.

Add liquidity

smart contract pool

Provide X
g +iee for Alice

: (S
) vy
i

Predatory trading
In traditional financial markets, the predatory trading strategy of front-running involves
exploiting non-public information about a pending trade. If the asset price is expected to rise/
fall as a result of the pending trade, the front runner will seek to buy/sell the asset before the
pending transaction executes.

AMM DEXs aim to mitigate malpractice by providing complete transparency about (i) the
available liquidity for asset X and Y; (ii) all performed trades; (iii) all pending trades on the P2P
network; (iv) the pricing formula.

However, AMM DEXs also exacerbate malpractices, such as sandwich attacks.

Constant Product Pricing Formula

Instant liquidity

irrespective of the trade size
Purchase of Y increases price of Y
and decreases the price of X

Ratio of asset X and Y sets the price

xXy==%k
4 P
asset X assetY
. . constant
quantity quantity

State Before
Xo =10

Yo =30

k =xy-y, =300

R
>

Amount y of asset Y
in the pool

—
(]
o

... State After
x =15
=20
k=x -y =300

N
o
».

xy = 300

Amount x of asset X

1015 in the pool

Transparency + High-Frequency Trading

= Attacks

—3a). T, added to mempool—-"" S

‘\‘ Network
7). Broadcast !
TA1 andTA2 S .-

8). Tatand Tpo 3b). T, added
added to mempool to mempool

Miner
Node

4). T,, observed
- Ty 9). Tat, Ty Ta2

included in the
same block

6). Adversary sends
TA1 and TA2

Y

5). Profitable?

Adversary Miner

. Ethereum ‘K—z). Broadcast T,

Node

1). Victim sends

transaction T,

Lightweight
Node/ Full

- We consider a blockchain P2P
network, where a victim initiates
trades on an AMM DEX.

- The adversary observes not yet
mined pending victim
transactions on the P2P network

- The adversary (not colluding with

a miner) can issue its own

transactions.

The adversary manipulates the

transaction “priority” by

Victim

controlling the transaction fee
per unit of computation

Sandwich Attack - Liquidity Taker Attacks Liquidity Taker

A

Amount y of asset Y
in the pool

Slippage
protection

My/\

1 TV . -'
! TransactXForY '—pendlng ':
; T I—pending—: :—):

Block

TransactXForY

The . o
TransactYForX |—pend|ng e

Block
N+k

transaction order

time appearance on the blockchain P2P network

Amount x of asset X

in the pool

ETH transacted by the victim

v

ry (in ETH)

by the adversa

Revenue

- The victim transaction 7, specifies
its slippage protection based on the

AMM state of block N. Both the
trade size, slippage protection
configuration are visible on the
blockchain P2P network.

- The adversarial’s goal is to include

T4, Ty, T, in the same block.

N + k in that exact sequence.

- Not every victim transaction yields a
profitable attack. [Mitigation] We
quantify a minimum profitable victim
input, under which an adversary will
be unable to make a profit.

Sandwich Attack - Liquidity Provider Attacks Liquidity Taker

Ty

E TransactXForY l—pendlng

>
Tas |—pending~><—):

Block
N

RemoveLiquidity
T

A2 H
AddLiquidity [—pending

Thas .
TransactYForX l—pendlng

time appearance on the blockchain P2P network

N,
7

N
>

Block
N+k

- We present a novel sandwich attack,
where a liquidity provider targets a
victim liquidity taker.

- The attacker pays higher transaction
fees

- The attacker foregoes the commission
fees for the victim’s transaction

transaction order

How miners order transactions

Amount y of asset Y

in the pool

Slippage Protection

4

\

\)

TC
Slippage
protection

Slippage
protection

AY
\
\
\
\
\

T

C™

.

Amount y of asset Y
in the pool

\ ‘

There are two types of slippages:

- Expected slippage is the
expected increase or decrease
in price based on the (i) pricing
formula; (ii) trading volume; (iii)
available liquidity.

- Unexpected slippage is the
additional slippage. This is
typically caused by other

Amount x of asset X
in the pool

Amount x of asset X
in the pool

market participants

Strategy Number of Blocks Ratio
Empty Block 55,545 0.0234
Order per Gas Price 1,862,800 0.7853 _
Order per Parity Default 384,150 0.1620
Unknown Ordering 69,589 0.0293
Total 2,372,084 1.0000

At the time of writing this paper, 78.3%
of the Ethereum clients operate Geth,
20.2% operates Parity.

Miner seems to switch strategies, but
most blocks just sort transactions by
their gas price per unit of computation
at the time of writing (block 6.62~9M)

- Parity priorities local and retracted transactions first, and penalise transactions with

heavy computation.

- Transaction ordering is more complicated nowadays, as miners start to provide

transaction reordering as a service.

Multiple adversaries

- We assume all adversaries are
rational and attack with the

parameters defined in table below.
- Our results suggest that having
multiple attackers does in expectation -

divide the total revenue.

10000 1 —— 5 Adversaries

5 Adversaries

8000 1 —— 10 Adversaries

6000 -

4000 A

Gas price (in GWei)

2000

0 5 10 15 20 25 30
Victim transaction pending duration (in seconds)

Transaction Execution Order (left to right) Winner Reward for Attacker A Reward for Attacker O
TarvV To1 X Ty vV Too X Tas v/ A Revenue — Fee(T41) — Fee(T42) —Fee(To1) — Fee(To2)
TarvV Tor X Ty vV Tav Too X A Revenue — Fee(T'41) — Fee(T42) —Fee(To1) — Fee(To2)
TorV Ta1 X Ty v/ Tax X TooV 0] —Fee(Ta1) — Fee(Ta2) Revenue — Fee(Tp1) — Fee(To2)
TorV Ta1 X Ty vV ToavV Tas X o —Fee(Ta1) — Fee(Ta2) Revenue — Fee(Tp1) — Fee(To2)

mailto:liyi.zhou@imperial.ac.uk
mailto:kaihua.qin@imperial.ac.uk
mailto:a.gervais@imperial.ac.uk
mailto:christof.torres@uni.lu
mailto:le52@purdue.edu

