
Constant-Time Foundations
for the New Spectre Era

Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall,
Dean Tullsen, Deian Stefan, Tamara Rezk, Gilles Barthe

We can adapt new hardware 
features and model future 
Spectre variants.

Existing Spectre defenses 
are ad hoc and miss 
attacks.

The only robust way to prevent leaking secrets in 
cryptographic code is to use constant-time 
programming.

Unfortunately, Spectre attacks reveal that even securely 
written cryptographic code may unintentionally leak 
secret information as a result of misspeculation in the 
processor.

The example on the left is constant-time. But if the 
processor misspeculates into the branch, it can still leak 
bytes of secretKey via the cache!

Existing defenses are generally unsound (Microsoft's /Qspectre 
compiler flag) or far too heavy-handed (Intel's SSBD feature) ― 
we need defenses rooted in formal methods. To that end, 
we define Speculative Constant-Time (SCT), the first formal 
notion of security for cryptographic code. Code that is SCT is 
secure even when the attacker has complete control over the 
branch predictor or other hardware features!

Our semantics is also the basis for Pitchfork, our prototype 
analysis tool. Pitchfork explores every speculative execution 
path in a binary and detects whether secrets can be leaked.

Spectre attacks can
break secure code.

SCT is backed by our execution semantics, which is 
powerful enough to capture every known variant of 
Spectre, including future ones ― we predicted and 
modeled the flaw in AMD's “Predictive Store 
Forwarding” feature, which wasn't even in 
processors until after our paper!

Pitchfork reveals Spectre gadgets in real code.

University of California, San Diego
INRIA Sophia Antipolis
IMDEA Software Institute
MPI for Security and Privacy

We used Pitchfork to find Spectre gadgets in the libsodium 
and OpenSSL libraries, in code that was previously verified to 
be constant-time. In fact, we found that compilers themselves 
can insert Spectre gadgets: The vulnerable code in libsodium 
was part of Clang's stack-smashing defense!

// n is normally safe, but is 
OoB when misspeculated!


