
Ticking Timebomb Trojans (TTTs)Problem

Bomberman: Defining and Defeating Hardware Ticking Timebombs at Design-time
Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks

Evaluation

Bomberman Future Directions (Fuzzing HW Like SW)

FANCI [CCS’13]

VeriTrust [DAC’13]
UCI [S&P’10]

An
al

ys
is 

Te
ch

ni
qu

e

Approach

Bomberman
Power Resets [S&P’11]

WordRev [DATE’13]

Dy
na

m
ic

St
at

ic

Trojan-Agnostic Impl.-Specific

Existing design-time Trojan detection methods suffer
from false negatives (i.e., Trojan designs that bypass
these defenses). Bomberman strikes a balance in
detection capabilities, detecting a specific class of
Trojans (Ticking Timebomb Trojans, or TTTs)
according to their behavior, not implementation.

Vetting Untrusted 3rd Party IP

Class-Specific

Synthesis Layout Fabrication

Hardware Development Process

RTL Design Packaging

To cope with increased heterogenous on-chip
parallelism, and minimize their time-to-market, most
semiconductor companies outsource portions of the
design process by purchasing 3rd party IP to include
in their designs. Outsourcing presents a security risk:
How do we know untrusted 3rd parties will not
include hardware Trojans in their designs?

2.
 E

ve
nt

3. Incr. Amount

0 1 0 1

0101

==

Payload

1. State-Saving Component (SSC)

Ticking Timebomb Trigger

+

We define TTTs as Trojans with sequence counter
Triggers that monotonically approach activation.
Moreover, we define these counters by their
behavior, namely they: 1) never repeat and 2) never
complete. Such Triggers are implemented using
three components: 1) SSC, 2) Increment Event, and
3) Increment Amount. To identify any TTT design, all
we must track are SSC values!

4. Check if SSCs violate either TTT
invariant during sim.

3. Simulate the design

2. Assume all SSCs are suspicious 
(False negatives are impossible!)

1. Enumerate all SSCs in the RTL 

Repeat 75 Encryptions75 Random Encryptions

Found 6 SSCs

Repeat 75 Encryptions75 Random Encryptions

Found 6 SSCs

AES-128 (DUT)
ciphertext

Plaintext LFSRKey LFSR Verify

AES Testbench

Minimizing false positives is manual. We must tune test vectors to minimize
false positives by causing repeated values. Could we automate this?

We implant six TTTs into an AES core and analyze it
with Bomberman. We use a Constrained Random
Verification (CRV) approach to exercise the core.

Sim. Engine

DUT Model

Test Harness

HW Simulation Model

Mutate Tests

Test

Save Coverage 
Increasing Tests

Execute 

Test

Save Crashes

Discard Un-
interesting Tests

Compile / Instrument HW Simulation Model

Input Seeds

Input Queue HSB

1

2
3

5

4 Coverage-Guided 
Greybox Fuzzer (AFL)

False Negatives

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work that was partially supported by: 1) the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001, 2) the US National Science Foundation under Grant CNS-1646130, 3) the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1256260, and 4) the US Army Research
Office under Grant W911NF-21-1-0057. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.


