
Poster: Ensemble Learning-Based Detection of
Office Malware

1st Michael Blair
Oracle Labs

Brisbane, Australia
michael.blair@live.com.au

2nd François Gauthier
Oracle Labs

Brisbane, Australia
francois.gauthier@oracle.com

3rd Scott Gaetjen
Oracle

Frisco, Texas
scott.gaetjen@oracle.com

Abstract—The initial step of many cyberattacks is to infect a
target through a suitable infection vector. Among the plethora
of vectors available to attackers, email attachments remain a
common and cost-effective way to perform initial infection. Of all
the kinds of attachments that can be used to initially infect a host,
Office documents became significantly more common in 2018. In-
deed, according to the 2019 Internet Security Threat Report [1],
48% of malicious email attachments were Office files in 2018, up
from 5% in 2017. In this work, we introduce a novel ensemble-
learning approach that detects Office malware based on three
sources of information: text content, metadata, and Visual Basic
for Applications (VBA) macro code. Contrary to previous studies
that focus on detecting malicious VBA macros only, our ensemble
learning approach can also detect macro-less Office malware,
such as social engineering or phishing documents, which account
for a large proportion of malicious email attachments in our
dataset. Learning from human-interpretable features further
improves the overall explainability of our classifier. Evaluation
on a dataset of 32 450 open-source benign and 11 551 internally
sourced malicious documents shows that our ensemble classifier
achieves a precision of 97% and a recall of 98%.

Index Terms—Malware, Office documents, Ensemble learning,
Explainability

I. INTRODUCTION

Among the various potential infection vectors in internet-
facing systems, human actors remain a vector of choice.
Indeed, Symantec’s 2019 Internet Security Threat Report [1]
reveals that one in 412 emails was malicious in 2018, and
that over 90% of them used attachments, which require human
intervention, as payloads. Furthermore, the report also reveals
that 48% of those attachments were Office files, up from 5% in
2017. To address this increasing threat, we present an ensem-
ble architecture for detecting malicious Office documents. This
architecture combines three distinct sources of information in
a novel way and uses document metadata features, which have
been overlooked in previous work. By extracting features from
document text and metadata in addition to VBA code, this
new architecture broadens the scope of detectable malware
well beyond that of previous VBA macro-based detectors.
Using an ensemble of classifiers to make predictions based on
text, metadata and VBA features enhances interpretability by
providing insight into which information source contains ’sus-
picious’ content. Furthermore, using ”traditional” classifiers
(e.g. decision tree, random forests, support vector machine,
naı̈ve Bayes, and k-nearest neighbours) allows for effortless

investigation into the features that lead to a malicious clas-
sification, in contrast to popular yet notoriously difficult to
interpret Nerual Network models, while retaining high perfor-
mance. This new architecture achieves convincing results by
precisely and reliably detecting a range of real-world malicious
Office documents.

II. METHODOLOGY

A. Dataset & Features

32 450 benign samples consisting of de-duplicated Office
documents from the Enron email attachment dataset and
11 551 internal email attachments flagged as malicious by
Oracle’s security team were sourced. As outlined in Figure
2, upon analysing an Office sample for the first time, our
architecture first extracts text and raw metadata information
using the Oracle Outside In technology [2], followed by VBA
code extraction using Apache POI [3]. Raw text is represented
as vectors of Term Frequency Inverse Document Frequency
(TFIDF) scores. Semi-structured metadata properties undergo
a variety of transformations, such as one-hot encoding of
categorical properties, scaling for continuous properties, and
abstracting strings and arrays to their length. Feature engineer-
ing was automated using a custom ’transformer’, performing
engineering steps after a small range of statistical measures
on each feature. VBA code is tokenized, using an custom-
built lexer based on the VBA language specification [4].
Token streams are converted to token frequency vectors by
using the bag-of-words technique. Most relevant categorical
and continuous features are selected with Chi-square analysis,
and Analysis of Variance (ANOVA) respectively.

METADATA
CLASSIFIER #1

PowerPoint
2016

Excel 2000

Excel 2004

Excel 98

Word 2016

METADATA
CLASSIFIER #2

METADATA
CLASSIFIER #3

Word 98

Fig. 1: HCA on Feature Distribution to Create More Specific
Classifiers

B. Clustering on Feature Distribution

Experiments showed that training a single metadata classi-
fier, irrespective of file types, yields poor predictions due to a
large imbalance in the metadata properties of each file type.
To overcome this limitation, we group file types together using
Hierarchical Cluster Analysis based on their metadata feature
distribution, and train individual classifiers on each cluster
which are selected at prediction time based on a sample’s file
format. Following clustering, the dataset was curated by: 1.
balancing clusters to obtain a 50% class split, and 2. only
keeping clusters with a significant number of documents.

Fig. 2: Ensemble learning-based Office malware detection

C. Architecture

Once features are extracted, engineered, and selected, we
select the best performing classifiers from amongst a collection
indicated in Table I, which are then tuned by employing a grid
search strategy. To aggregate the individual predictions, we
use a voting layer, as shown in Figure 2. We trialled multiple
voting methods and found that biased voting results in the best
ensemble performance. In this scheme, the ensemble mimics
the output of the classifier with the highest accuracy, unless
outvoted by both of the other classifiers.

TABLE I: Average F1 scores with default hyperparameters
after 10-fold cross-validation

Classifier Text F1 Metadata F1 VBA F1

K-Nearest Neighbours 0.91 0.89 0.88
Support Vector Machine 0.38 0.77 0.92
Decision Tree 0.88 0.90 0.98
Naı̈ve Bayes 0.9 0.87 0.95
Random Forest 0.92 0.92 0.95

D. Explainability

Predictions from individual classifiers in the ensemble al-
ready hint at the ’suspicious’ components of a document. To
gain additional insight, an analyst can further investigate the
feature weights of each classifier to find the most influential
features. Table II shows the most influential features in our
dataset. For example, the term ‘powershell’ in document text,

TABLE II: Most influential features per classifier

Classifier Features

Text powershell, time, company, information, trading, meeting

VBA SHELL_API, VB_GLOBALNAMESPACE, FOR,
AUTOOPEN_AUTO, CREATEOBJECT_API, PLUS

Metadata count lines, word count, count paras, country count, cur-
rency count, last saved by length, person name length

or the SHELL or AUTO OPEN tokens in the VBA code are
strong indicators of maliciousness that are rarely, if ever,
present in benign documents, leading to such a high precision
in the VBA classifications. Interestingly, the frequency of
the PLUS token (+) in VBA code is indicative of string
concatenation obfuscation, a technique that isn’t inherently
malicious, but in practice was not employed in benign samples.
Metadata properties such as the number of words, paragraphs
or revisions (saved changes made to the document) along
with the term usage frequency of countries, currencies (e.g.
“$5.00”) or people’s names are all discriminating features.

III. RESULTS & EVALUATION

TABLE III: Predictive power of task-specific classifiers

Classifier Train size Test size Precision Recall Accuracy

Text 6962 816 0.9772 0.9817 0.9779
VBA 2841 287 1.0 0.9957 0.9965
Metadata 13450 2000 0.9694 0.9790 0.9740

Ensemble 19906 2000 0.9694 0.9800 0.9745

Table III compares classifier predictive power after tuning,
and also shows how out of the 19 906 train and 2 000 test
documents, many lack either text, VBA code, or metadata,
as reflected in the train and test set sizes. This suggests
that previous works relying on VBA features only [5], [6]
would fail to detect a high number of malicious documents in
practice. By using three sources of information, our ensemble
classifier extends the range of detectable malware and achieves
a precision of 97% and recall of 98%.

REFERENCES

[1] Symantec, “Internet security threat report,” https://www.symantec.com/
content/dam/symantec/docs/reports/istr-24-2019-en.pdf, 2019, accessed:
30-03-2020.

[2] Oracle, “Outside In Clean Content,” https://www.oracle.com/technetwork/
middleware/content-management/oit-all-085236.html, accessed: 30-03-
2020.

[3] A. S. Foundation, “Apache POI - the Java API for Microsoft Documents,”
https://poi.apache.org/, accessed: 30-03-2020.

[4] Microsoft, “VBA Language Specification,” https://docs.microsoft.com/
en-us/openspecs/microsoft general purpose programming languages/
ms-vbal/d5418146-0bd2-45eb-9c7a-fd9502722c74, accessed: 30-03-
2020.

[5] E. Aboud and D. O’Brien, “Detection of malicious VBA macros using
Machine Learning methods,” in Proceedings for the 26th AIAI Irish
Conference on Artificial Intelligence and Cognitive Science. CEUR-
WS.org, 2018, pp. 374–385.

[6] S. Kim, S. Hong, J. Oh, and H. Lee, “Obfuscated VBA macro detection
using machine learning,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018,
pp. 490–501.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.oracle.com/technetwork/middleware/content-management/oit-all-085236.html
https://www.oracle.com/technetwork/middleware/content-management/oit-all-085236.html
https://poi.apache.org/
https://docs.microsoft.com/en-us/openspecs/microsoft_general_purpose_programming_languages/ms-vbal/d5418146-0bd2-45eb-9c7a-fd9502722c74
https://docs.microsoft.com/en-us/openspecs/microsoft_general_purpose_programming_languages/ms-vbal/d5418146-0bd2-45eb-9c7a-fd9502722c74
https://docs.microsoft.com/en-us/openspecs/microsoft_general_purpose_programming_languages/ms-vbal/d5418146-0bd2-45eb-9c7a-fd9502722c74

	Introduction
	Methodology
	Dataset & Features
	Clustering on Feature Distribution
	Architecture
	Explainability

	Results & Evaluation
	References

