Poster: A Secure Plausibly Deniable System for
Mobile Devices against Multi-snapshot Adversaries

Bo Chen, Niusen Chen
Department of Computer Science, Michigan Technological University
{bchen, niusenc}@mtu.edu

Abstract—Mobile computing devices have been used broadly to
store, manage and process critical data. To protect confidentiality
of stored data, major mobile operating systems provide full disk
encryption, which relies on traditional encryption and requires
keeping the decryption keys secret. This however, may not be
true as an active attacker may coerce victims for decryption
keys. Plausibly deniable encryption (PDE) can defend against
such a coercive attacker by disguising the secret keys with decoy
keys. Leveraging concept of PDE, various PDE systems have been
built for mobile devices. However, a practical PDE system is still
missing which can be compatible with mainstream mobile devices
and, meanwhile, remains secure when facing a strong multi-
snapshot adversary. This work fills this gap by designing the
first mobile PDE system against the multi-snapshot adversaries.

Index Terms—plausibly deniable encryption, mobile devices,
flash memory, multi-snapshot adversaries

I. INTRODUCTION

People today are turning to mobile computing devices
(e.g., smartphones, tablets, smart home assistants like Amazon
Echo and Google Home) for social networking, e-commerce,
online banking, etc. This brings a lot of convenience, but also
creates a significant security concern since mobile devices are
increasingly used to store, manage, and process sensitive data.
Especially, users from federal agencies/military departments
increasingly use mobile devices to handle mission critical data
daily. This makes it an urgent need to protect data in mobile
devices. Major mobile operating systems have incorporated
full disk encryption (FDE) [1] to protect data confidentiality.
This however, cannot defend against a coercive attack, in
which the device’s owner is forced to disclose the decryption
key. For example, a human rights worker collects criminal
evidence using her phone in a region of oppression; to keep
the evidence secret, she stores it encrypted; when she tries to
cross border, the inspector may notice existence of encrypted
data and coerce her to disclose the decryption key.

Plausibly Deniable Encryption (PDE) has been proposed
to defend against an adversary which can coerce users into
revealing secret keys. PDE works as follows: Original sensitive
data are encrypted into ciphertexts such that, when using
a decoy key, reasonable and innocuous plaintexts will be
generated; only when using a true key, original sensitive
data will be obtained; therefore upon coerced, the victim can
disclose the decoy key and, the adversary uses the decoy
key for decryption, obtaining the innocuous plaintexts rather
than the original sensitive data. Instantiating PDE in cryp-
tography could be a challenging problem. Instead, a variety

of deniable storage systems [3], [4], [7], [8] were proposed
to provide deniability for mobile devices, leveraging PDE
concept. However, they are built on the block layer and suffer
from deniability compromise in the underlying flash memory,
due to not being able to “touch” the internal raw flash [6].
DEFTL [6] takes an initial step of incorporating PDE into
flash memoryl. However, it is vulnerable to a multi-snapshot
adversary, which can have access to the raw flash multiple
times over time and, by comparing different disk snapshots
captured, it can detect unaccountable changes on the random
data caused by writes performed by the hidden volume,
compromising deniability. A PDE system designed for mobile
devices which can resist against multi-snapshot adversaries
is still missing in the literature. This work thus aims to fill
this gap by designing the first secure PDE system for mobile
devices which can combat multi-snapshot adversaries.

II. BACKGROUND ON FLASH MEMORY

As a non-volatile storage medium which can be electrically
erased and reprogrammed, flash memory is broadly used in
mainstream mobile devices including smartphones, tablets,
IoT devices. Flash memory stores information in an array of
memory cells, which are grouped into blocks, and each block
is divided into pages. Compared to mechanical disks, NAND
flash has some unique characteristics: 1) It uses an erase-
before-write design, i.e., a flash cell needs to be erased before
it can be overwritten. 2) Its unit of read/program is a page,
but its unit of erase is a block. Therefore, overwriting a page
requires first erasing the entire encompassing block which
is expensive. Thus, it usually uses an out-of-place update
strategy. 3) A flash block usually has a finite number (e.g.,
10K) of program-erase cycles, and wear leveling is usually
required to distribute writes/erasures across the flash.

The most popular form of using flash memory is to emulate
it as a block device to be compatible with traditional block file
systems like EXT4 and FAT32. This is commonly found in
flash memory cards like eMMC cards, SD/microSD/MiniSD
cards. A piece of special firmware, Flash Translation Layer
(FTL), is introduced between the block device and the raw
flash. The FTL transparently handles unique nature of flash,
and implements functions like address translation, garbage
collection, wear leveling, and bad block management.

I Another work DEFY [7] also tries to build PDE into flash memory. Their
design strongly relies on system properties provided by a flash-specific file
system YAFFS, which is rarely used today.

ITI. ADVERSARIAL MODEL

We consider a computationally bounded adversary, which
can have access to external storage of a victim mobile device
at different points of time, i.e., a multi-snapshot adversary.
Each snapshot can be a physical image of raw NAND flash,
obtainable by forensic data recovery tools [2]. The adversary
is assumed to be not able to capture the device owner when
she is working on storing hidden sensitive data.

IV. DESIGN

Compared to a single-snapshot adversary [3], [6], [8],
the multi-snapshot adversary is much more difficult to be
combated. MobiCeal [4] combats an adversary which can
obtain multiple snapshots from the block device layer by:
1) introducing a dummy write on the block device to deny
unaccountable changes caused by hidden sensitive data; and
2) writing all the data (public, dummy and hidden data) to
random locations of the block device to avoid deniability
compromise. This however, cannot combat an adversary which
can obtain multiple snapshots from the raw flash memory
(Sec. III), because: To accommodate special nature of flash
memory, FTL usually follows a log-structured writing manner,
i.e., regardless how data are written on the block device, they
are written sequentially to the flash memory; thus, random
writes on the block device will become useless and deniability
may be compromised by the snapshot adversary using the
raw flash memory. To combat the multi-snapshot attacks, we
carefully modify the FTL as follows:

First, two modes, a public and a hidden mode, are incorpo-
rated into the FTL. Correspondingly, there are two volumes,
a public and a hidden volume introduced. The public volume
is encrypted using FDE with a decoy key while the hidden
volume is encrypted using FDE with a true key. In the public
mode, the user can write public non-sensitive data to the
public volume and, in the hidden mode, the user can write
hidden sensitive data to the hidden volume. The public volume
is initially filled with randomness and the hidden volume is
stored hidden among the randomness.

Second, upon writing the public volume, the FTL will
perform additional dummy writes of random data. A multi-
snapshot adversary can compare two snapshots captured, and
will notice changes among the randomness caused by hidden
data writes. Therefore, by performing dummy writes, the
hidden data writes can be denied as the dummy writes. One
security issue is that, rarely, there are no public data writes
between two snapshots captured by the adversary and, if any
hidden data writes are performed, the adversary will detect
existence of hidden writes, compromising deniability. To avoid
this compromise, the FTL can actively perform a few dummy
writes if there are no public data writes for a long time.

Third, the log-structure writing strategy of the FTL is
changed to random writing. With log-structure writing, when
a user writes a large hidden file in the hidden mode,it will be
stored in flash blocks following those storing public data. This
can be noticed by the adversary, leading to deniability compro-
mise. With random writing, this compromise will be mitigated.

In addition, the random writing strategy is exclusively feasible
for flash memory, since random seeks are efficient on flash
memory. In addition, random placements inherently distribute
data evenly among flash, achieving good wear leveling.
Other techniques include introducing a global bitmap to
FTL to keep track of usage of flash pages to prevent public
data from overwriting hidden data. A more complete descrip-
tion of our design can be found in our technical report [5].

V. PRELIMINARY EXPERIMENTAL RESULTS

A major change of the FTL in our design is to convert the
conventional log-structure writing to random writing as well as
introduce dummy writes to obfuscate writes performed by the
hidden mode. To access this impact, we implemented random
writing and dummy writes into an open-source NAND flash
controller framework, OpenNFM. We currently implemented
dummy writes in a simple way that, when a normal write is
performed, we will perform a dummy write if a randomness-
based dummy write condition [4] is satisfied. We also ported
our prototype to LPC-H3131, an electronic development board
equipped with 180MHz ARM micro-controller, 512MB SLC
NAND flash. To simulate a mobile device, we used another
embedded board, Firefly AIO-3399J, as the host device to
read/write the external flash storage provided by LPC-H3131
via a USB interface. We ran benchmark tool “fio” in the host
device. The write throughput is shown in Table I. We can
observe that, compared to the original OpenNFM, the write
throughput of our design decreases around 60%. This is due
to extra overhead caused by random writing as well as dummy
writes associated with each normal write.

fio pattern OpenNFM | Our Scheme

sequential write | 2550 KB/s | 784 KB/s

random write 2110 KB/s | 760 KB/s
TABLE I

THROUGHPUT COMPARISON.

VI. ACKNOWLEDGEMENT

We would like to thank Fengwei Zhang for the initial
discussion of the design. This work was supported by National
Science Foundation (1928349-CNS and 1938130-CNS).

REFERENCES
[1

—

Android full disk encryption.

encryption/, 2016.

M. Breeuwsma, M. D. Jongh, C. Klaver, R. V. D. Knijff, and M. Roeloffs.

Forensic data recovery from flash memory. Small Scale Digital Device

Forensics Journal, 1(1):1-17, 2007.

B. Chang, Z. Wang, B. Chen, and F. Zhang. Mobipluto: File system

friendly deniable storage for mobile devices. In ACSAC. ACM, 2015.

B. Chang, F. Zhang, B. Chen, Y. Li, W. Zhu, Y. Tian, Z. Wang, and

A. Ching. Mobiceal: Towards secure and practical plausibly deniable

encryption on mobile devices. In DSN, pages 454-465. IEEE, 2018.

B. Chen. Towards designing a secure plausibly deniable system for mobile

devices against multi-snapshot adversaries—a preliminary design. arXiv

preprint arXiv:2002.02379, 2020.

[6] S.Jia, L. Xia, B. Chen, and P. Liu. Deftl: Implementing plausibly deniable
encryption in flash translation layer. In CCS. ACM, 2017.

[71 T. M. Peters, M. A. Gondree, and Z. N. J. Peterson. DEFY: A deniable,

encrypted file system for log-structured storage. In NDSS, 2015.

A. Skillen and M. Mannan. On implementing deniable storage encryption

for mobile devices. In NDSS, 2013.

https://source.android.com/security/

2

—

3

—

[4

=

[5

—

[8

—_

