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Abstract—In this work, we propose a heuristic framework,
which combines the transfer-based method with the query-
based method to improve the black-box adversarial attack. The
framework is composed of the transfer part and the adaptive
query part, which can maximize the benefit of transfer-based
prior and improve query performance. The skip query strategy
is adopted to accelerate the gradient estimation procedure, and
the transfer gradient is integrated into query information to avoid
the convergence problem. Experiments consistently demonstrate
that compared with the baseline methods, our methods require
much fewer queries to perform black-box attacks. Moreover, our
framework is flexible to integrate other query-efficient methods
such as dimension reduction techniques to further improve query
efficiency.

I. INTRODUCTION

Though Deep Neural Networks(DNNs) have achieved sig-
nificant success in various applications, recent research has
demonstrated that even state-of-the-art neural networks are
vulnerable to adversarial examples [1]. In this work, we
consider the black-box adversarial setting, which assumes that
the attackers have no or limited access to the target model and
are more practical in real-world situations. Based on whether
an attacker needs to query the target model, black-box attacks
can be roughly divided into transfer-based methods and query-
based methods. However, query-based methods usually require
a tremendous number of queries to estimate the approximate
gradient [2], and transfer-based methods have no guarantee of
a satisfactory attack success rate [3], [4].

Recently, some work has combined these methods to im-
prove query efficiency [5], [6]. The Prior-RGF integrates the
gradient of a surrogate model into the gradient estimated by the
query information through an optimal coefficient that controls
the strength of the transfer gradient. Following the idea of
using a transfer gradient as prior information, we propose
a heuristic framework, which always maximizes the benefit
of the transfer gradient and improves the performance. The
framework can be divided into two parts, the transfer part
and the adaptive query part. When the transferability of the
surrogate model is strong enough, or the adversary is not
close to the adversarial region, we only utilize the transfer
gradient to update the adversary. Besides, while the gradient
of the surrogate model points to the non-adversarial region
we use an early stop strategy to terminate this procedure. In
the adaptive-query part, since successive gradients are heavily
correlated along the gradient estimation trajectory [7], we

adopt the strategy of skipping queries and reusing the gradient
estimated in previous iterations. Furthermore, to accelerate
query efficiency and avoid the convergence problem caused by
the skipping strategy at the beginning stage, we integrate the
transfer gradient and query gradient as the overall estimation
gradient.

We evaluate our method on the ImageNet validation dataset
by comparing it with the alternative state-of-the-art methods.
The results demonstrate that our method requires much fewer
queries than the baseline method without sacrificing the attack
success rate. Furthermore, the proposed framework is flexible
to integrate various query-efficient methods such as those
dimension reduction techniques or other prior information.

II. PROBLEM STATEMENT

We consider the target model that the class prediction scores
are known to an attacker. Following this setting, we denote
the black-box model as a classification function f(x) ∈ RK ,
x ∈ [0, 1]D is the input image with D dimensions, K is the
number of classes, and the model yields a vector of prediction
probabilities of all K image classes. The cross-entropy loss
function can be denoted as J(f(x), y), which depends on the
output f(·) and the desired class label y. The goal of attack
is to generate an adversarial example xadv that is classified as
target label while the Lp norm of the adversarial noise is less
than an allowed value ε as

argmax
k

f(xadv) = y, s.t.||xadv − x||p ≤ ε. (1)

III. METHODOLOGY

In this section, we illustrate the details of our framework,
which includes the transfer part and the adaptive query part.
We first use the transfer part to craft an input example, and the
adaptive query part will be executed if the output of transfer
part is not a successful adversarial example. The projected
gradient descent(PGD) [8] is iteratively used to generate the
adversarial example in both parts, except that the true gradient
is replaced by an approximate gradient.

The Transfer Part. As mentioned above, the transfer part
only utilizes the gradient that is obtained by the surrogate
model to update the input example. An early stop strategy is
proposed to prevent the adversary to move towards the non-
adversarial region. Specifically, we query the black-box model



TABLE I
THE EXPERIMENTAL RESULTS OF BLACK-BOX ATTACKS

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG.Q ASR AVG.Q ASR AVG.Q

Prior-RGF(ResNet-152) 92.2% 1489 98.2% 1298 98% 1197
Prior-RGF(MobileNet-V2) 92% 1525 98.3% 1319 97.6% 1634

ours(ResNet-152,S=0) 95.1% 1177 99.7% 833 99.9% 569
ours(ResNet-152,S=1) 92.5% 794 98.5% 573 99.2% 431

ours(MobileNet-V2,S=0) 94.2% 1256 99.7% 895 99.1% 1065
ours(MobileNet-V2,S=1) 91.5% 851 98.5% 627 97.5% 844

to compute the value of loss function J at the end of each step
and terminate the iteration if the loss value does not decrease
in N consecutive steps, which is set as 10 in our experiments.

The Adaptive Query Part. According to [7] successive
gradients are heavily correlated, we skip queries by reusing
the gradient estimated in the previous interations. The number
of steps can skip is denoted as S, and we take S = 0 and S =
1 in the following experiment. The basic gradient estimation
method we adopt is the Random Gradient-Free(RGF) [9], in
each query step, the gradient is estimated by

g =
1

q

q∑
i=1

gi, gi =
J(f(x+ σui), y)− J(f(x), y)

σ
· ui (2)

where ui is a random Gaussian vector, and σ > 0 is a
smoothing parameter. g is the average estimation over q
random directions to reduce the variance. In addition, we
combine the transfer gradient v with the estimated gradient
g to obtain the approximate gradient ĝ as

ĝ = w · g + (1− w) · v (3)

where w is the coefficient to balance the estimated gradient and
the transfer gradient. The purpose of using the transfer gradient
here is to alleviate the convergence problem mentioned above
and accelerate query efficiency. The weight w is increasing
with the iteration until it is greater than or equal to 1.

IV. EXPERIMENT SETUP

We evaluate our approach for attacking black-box models
in targeted attacks setting under l∞ norm on the ImageNet
validation dataset. We randomly select 1,000 images that are
correctly predicted by all black-box models and fixed a random
target label for each image. We use the ResNet-152 model
and MobileNet-V2 model as the surrogate model to generate
transfer gradient, and attack the three normal training models
of Inception-V3, VGG-16, and ResNet-50. All of the above
models are provided by torchvision for ImageNet. We set the
perturbation size as ε = 0.05, learning rate as η = 0.01 for
PGD under the l∞ norm, with images in [0, 1]D, D = 224×
224 × 3. We restrict the maximum number of queries Q =
10, 000 for each attack, if the adversarial example is generated
within the Q queries, it can be considered a successful attack.
We compare the proposed method with the baseline method
Prior-RGF with the derived optimal λ∗.

The experimental results are shown in Table 1. In these
methods, we set the number of query used to estimate the
gradient to q = 50, and the sampling variance to σ = 0.0001.

The initial weight of the gradient estimated in the skip step
is set to w = 0.5, and each skip step is multiplied by 1.1,
until it reaches 1.0. We use the attack success rate and the
average number of query as metrics for comparing with the
baseline method. It can be seen that our method needs much
fewer query than the baseline without sacrificing the attack
success rate. Besides, we limit the maximum number of query
for each adversarial example and analyze the success rate
over these methods, the results are shown in Fig. 1, which
demonstrates that our method has higher success rate than the
baseline method with fewer query budgets.

Fig. 1. Attack Success Rate with different query budgets.

V. CONCLUSION
In this paper, we propose a framework that can always

maximize the benefit of the transfer gradient for improving
the query efficiency of black-box attack. The experimental
results demonstrate the effectiveness of our method, which
requires much fewer queries compares to the baseline method.
Furthermore, our framework is flexible to integrate various
query-efficient methods such as those dimension reduction
techniques or other prior information.
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