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Abstract—We present a scheme for harnessing advantages of
moving target defense while controlling overhead. We leverage
a partially observable Markov decision process with an ab-
sorbing state to incorporate attacker dynamics, overhead and
effectiveness of defenses, and limitations of intrusion detection
in a single model that can be solved to produce a policy graph.
We demonstrate the utility of the policy graph as the backbone
of a cyber defense system that thwarts the threat just enough,
just in time, defending against attacks while also preserving the
defender’s own system availability.

Index Terms—Moving target defense, optimality, POMDP

I. PROBLEM SUMMARY

As it gained attention in 2010, moving target defense (MTD)
was touted as a game changer capable of seizing the advantage
from attackers [1]. Today, MTD encompasses more than 90
individual techniques that defend systems by creating uncer-
tainty for attackers, yet these options can carry considerable
negative side effects [2]. Techniques are needed to harness
the advantages of MTD while controlling overhead, especially
when costs accumulate per-event such as in availability losses
when reconfigurations are deployed. This poster describes an
in-progress effort to develop an optimization scheme for MTD
leveraging partially observable Markov decision processes
(POMDP) with an absorbing state. Because the model encom-
passes attacker dynamics, defensive measures, the per-event
overhead of each, and the uncertainty inherent in detecting
attacker progress, it can be used to develop defensive policies
that trigger defenses in balance with competing requirements.

II. PROPOSED SOLUTION

The MTD system we propose, illustrated in Figure 1,
monitors indications of adversary activity to trigger optimal
defensive actions. Within this system, the overhead of MTD is
controlled by leveraging POMDP to develop a complete model
of attack-defense interactions under realistic conditions that
can be used to find an optimal defense implementation policy.
POMDP underpin the dominant techniques for developing
optimal decisions in sequential decision processes with state
uncertainty, which in our case stems from missed and false
attack detection by the upstream intrusion detection sysetm
(IDS). POMDP are described via (S,A, T,R,Ω, O) [3]. The
formulation for an n-stage cyber attack process is outlined in
Table I.
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Fig. 1. MTD scheme with overhead control via POMDP

TABLE I
POMDP FORMULATION TO FACILITATE MTD OPTIMIZATION

Component Description Size
States (S) attack phases (ex: reconnaissance) 1 × n
Actions (A) MTD options

(ex: IP address hopping)
1 ×m

Observations (Ω) IDS indication of attack
(also by phase, i.e., S = Ω)

1 × n

Transitions (T) likelihood attacker moves between
any two phases under given MTD

n× n×m

Costs/Rewards (R) overhead incurred by phase
and MTD (− to denote cost)

n×m

Observation
Probabilities (O)

likelihood IDS indication
aligns with true attack phase (pD),
earlier phase (pM ), or
later phase (pFA)

n× n

Within this system, the defender selects between m actions
based on an observation-based belief regarding the current
state with the goal of maximizing rewards. We formulate the
reward matrix R with negative rewards for both attack state
and defensive overhead to ensure solutions offer a balanced
approach to accomplishing attack suppression. POMDP has
previously been employed for optimal dynamic cyber defense
selection [4]. Additionally, frameworks have been developed
to manually optimize MTD implementation schemes based on
cost factors of each defense [5]. To our knowledge, we are the
first to use POMDP with an absorbing state to autonomously
optimize MTD with respect to accumulated per-event cost.

The state space S includes all attack stages. State s0 aligns
with perfect defense, and sn is an absorbing state repre-
senting the attacker’s ultimate goal. An absorbing final state
was adopted because each attack recovery process is unique
and thus not well represented stochastically. Additionally, we
found the absorbing state created desirable defensive perfor-
mance in that defensive aggression increases in the late stages
of the attack. Transition probabilities T (s, s′, a0) represent the
likelihood an attacker moves between any two states of their
own volition as sourced from study of past attacks. MTD



techniques are incorporated as additional actions, a1 through
am, defined in terms of the state transition probabilities and
cost incurred if enacted. The model captures likelihood of
attack detection as a state-aligned (S = Ω) observation
function describing the performance of an upstream intrusion
detection system. Probability of detection, pD, is the likelihood
observation and state match, with missed detection, pM and
false alarm pFA representing detection of the left and right
neighboring states, respectively.

In practice, POMDP formulation requires analysis of at-
tack patterns, MTD effectivness and cost, and the defender’s
overhead and attack tolerances. These requirements are a
drawback of implementing the proposed model-based decision
system, but we believe the potentially significant benefit of
optimization justifies steep initial investment.

For sufficiently small state and action spaces, POMDPs can
be solved via dynamic programming techniques for a policy
graph that maximizes the expected discounted value and thus
optimizes the overhead over the infinite horizon. Incoming
observations are coupled with the current node in the polciy
graph to look up the next node which prescribes the next
action. Operating under the policy accrues rewards as close
as possible to those expected under ideal condition pD = 1.0,
which simplifies to a Markov decision process with optimal
policy Π prescribing actions by state [6].

Validation of our system requires metrics of attack suppres-
sion, Φ, and availability. The first is quantified as Φ = 1− τ0

τ ,
which compares τ , the expected number of state transitions
before sn is reached, to τ0, the same quantity without MTD.
By extending absorbing Markov chain theory to accommodate
the formulated POMDP, the metrics can be predicted to within
3% of the values measured in simulation, which is useful in
exploring the impact of policy changes without the need for
additional policy graph computation or simulation.

III. VALIDATION

To validate our proposed system, we measured Φ and
availability during simulated defense against a five-stage at-
tack process (Start, Target Scan, Vulnerability Scan, Exploit
Launch, Attacked) exhibiting stochastic behavior T (s, s′, a0)
based on published honeypot data [7]. The defender chooses
between three MTD options with specifications listed in Table
II in accordance with policy graphs developed via incremental
pruning within pomdp-solve, a publicly available software
package [8]. For comparison, availability was also measured
in a system where reconfigurations deploy randomly with
exponential interarrival times calibrated for equivalent Φ.
State transitions are assumed to occur every 10 seconds in
accordance with data from [7], which facilitates extension of
availability loss to an overall availability percentage.

The POMDP-based scheme maintains attack suppression
and availability at greater than 96% for pD ≥ 0.8, as
shown in Figure 2(a)-(b). Compared to randomly deployed
reconfigurations, the POMDP-based scheme offers significant
overhead control. As indicated in Figure 2(c), the case for
the proposed system becomes increasingly compelling as pD

TABLE II
AVAILABLE DEFENSES, SPECIFICATIONS DEVELOPED FROM DATA IN [5].

Reconfig.
Basis

Impact
(P[s′ = s0 ])

Impact
(%)

Avail. Loss
(sec) Avail (%)

No Action n/a n/a 0.000 100%
IP address range−1

range
= 255

256
99.6% 9.590 4.1%

Service ser−servuln.
ser

= 2
3

66.7% 0.635 93.7%
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Fig. 2. Attack suppression (a) and availability (b) under simulated operation
of POMDP-based MTD system over approximately three million action
selections. Availability improvement (c) is measured against an MTD system
where reconfigurations occur with exponential inter-arrival times calibrated to
achieve equivalent attack suppression to (a).

improves. A random system calibrated to match Φ suffers
availability values up to 73 percentage points lower.

Initial results strongly support the ability of the proposed
system to harnesses MTD advantages and control overhead.
Future work will incorporate on-line POMDP solution tech-
niques to expand the state and action space capacity before
intractability becomes a concern. We also recognize that
defense hinged on attack detection can introduce risk that
requires assessment before this system could be practically
adopted, as well as an assessment of performance if there are
inaccuracies in the POMDP formulation.
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