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Machine learning models are currently applied in a variety
of high-stakes domains, e.g. providing predictive healthcare
analytics. These domains require high prediction accuracy
over high-dimensional data, and as a result, adopt increasingly
complex ML models. While simple rule-based systems and
linear models are easily understood, modern ML models —
which utilize complex mathematical structures, such as deep
neural networks — are hard to interpret. What makes the
problem even more challenging is that these models are usually
used as black-box algorithms, where the model only outputs
the decision without providing detailed information on its
intermediate computations for producing the output (decision).

The implementation of black-box algorithms in high-stakes
domains affects trust, raises concerns with respect to the
model’s reliability and fairness, and hinders model adoption
[1], [2]. Recent years have seen a widespread call for algorith-
mic transparency. Broadly speaking, algorithmic transparency
methods offer stakeholders additional information about the
algorithmic decision-making process, to facilitate their under-
standing of the model. In this work, we focus on feature-based
explanations, where the algorithm computes the influence
of various features of the point of interest on the model’s
decision [3]–[9]. However, offering additional information can
result in significant privacy risks, potentially exposing the
underlying model [10] or the model’s training data [11].

The analysis of the privacy risks of explanation algorithms
is largely limited to these works, and their overall privacy im-
plications are widely unexplored. Notably, there has been little
work on designing provably sound, as well as differentially pri-
vate, model explanations for black-box models. This calls for a
rigorous approach towards modeling the privacy risks of model
explanations, and the design of practical differentially-private
model explanations with provable explanation accuracy.

We focus on protecting the privacy of model-agnostic
feature-based explanations for black-box models, which do
not have access to the model parameters, and make no
assumptions on model structure. These techniques assume
access to a labeled dataset, sampled from the same underlying
distribution as the model’s training set, which we refer to as
the explanation dataset. The explanation algorithms locally
approximate the target model in the vicinity of the point of
interest, using the explanation dataset, in order to measure
the features’ influence on the model [4]–[6], [8], [12]. This

popular approach can leak sensitive information about the
explanation dataset through model explanations. This leakage
is independent of privacy loss with respect to training data.

Almost all existing model explanations do not offer any
proven privacy guarantees, and given their large/unbounded
sensitivity, achieving differential privacy can result in an ex-
tremely low accuracy. As an exception, QII could be random-
ized to satisfy differential privacy to protect the explanation
dataset [5]. However, there is no theoretical analysis of the
composition of the privacy loss of QII over a sequence of
queries, nor there is a bound on the utility loss of the algorithm
due to the randomness of the differential privacy mechanism.

Our Contributions. We propose provably sound, model-
agnostic, and differentially private algorithms for computing
model explanations. Our explanations are sound in the sense
that they are provably similar to some standard model expla-
nations, such as LIME [12]. Our methodology can be adapted
to any explanation method that relies on generating accurate
local models around the data point one tries to explain.

We first design a baseline interactive differentially private
mechanism for model explanation (class of algorithms that
require accessing the sensitive dataset for each query).This
method generates a feature-based explanation — a scalar
value for each data feature — in a differentially private
manner, using an explanation dataset. Our basic DP model
explanation generates an explanation for queried data points
by optimizing a convex function using a differentially private
gradient descent algorithm. We design our main algorithm on
top of this baseline. The main challenge, that we solve in this
paper, is to optimize the composed privacy loss of the model
explanation over all queries, with low explanation error.

Our main theoretical contribution is designing an adaptive
differentially private model explanation with bounded utility
loss. The algorithm utilizes past information (DP explanations)
effectively, and saves privacy spending significantly for model
explanations on new queries. Our key idea is to achieve greater
privacy saving by selecting a better initial point for the gradient
descent algorithm for each query using past information. We
improve upon bounds in [13] on the convergence of the DP
gradient descent (under a minor assumption), offering faster
convergence rates that depend on the initial point. Thus, by
carefully selecting an initialization point for the gradient de-



scent algorithm, we obtain significant privacy savings, without
compromising on explanation accuracy.

We show that when the initial point approaches the optimal
point, the DP gradient descent algorithm oscillates around the
optimal point (due to the algorithm’s inherent noise), spending
the privacy budget in vain. This insight leads to an enhanced
adaptive algorithm, which offers far better privacy savings for
only a minor accuracy loss.

All approaches described above are interactive. Despite their
efficiency in controlling the privacy risk, a sufficiently large
number of queries will eventually lead to unacceptable infor-
mation leaks (i.e., using all the allocated differential privacy
budget). To counteract this effect, we propose switching to a
non-interactive explanation phase, once a sufficient amount of
information has been released using the given privacy budget.
In this phase, new explanation queries no longer use the
private dataset, so do not impose any privacy loss; rather,
they generate explanations using only past explanation queries.
In other words, we continue to adaptively provide model
explanations, but instead of using previous explanations to
initialize the gradient descent algorithm, we use them directly
to linearly approximate the model on new queries. We provide
outline of our algorithms and statements of our theoretical
results in the poster.

We extensively test our approaches on micro-data as well
as text data, on classification machine learning models. Our
adaptive algorithm utilizes the privacy budget efficiently and
outperforms the non-adaptive approach in terms of both pri-
vacy and approximation accuracy. The adaptive algorithm
spends a similar amount of its privacy budget on initial queries
as the non-adaptive algorithm; however, it quickly begins to
effectively utilize past information to answer new queries. For
example, the adaptive algorithm can answer 4,500 queries
using 52% of the privacy budget required by the non-adaptive
algorithm on the ACS13 dataset; the enhanced adaptive al-
gorithm can answer the same number of queries using 21%
of the budget (neither compromise on explanation accuracy).
This gap increases as the number of queries increases. We
provide some basic experimental results for ACS13 dataset in
Figure 1.

We empirically investigate the convergence of the adaptive
protocol when starting from a good initialization point, and
verify the foundations of our algorithm. The differntially
private gradient descent updates tend to throw the iterative
process away from the optimal point, followed by repeatedly
converging back to similar points. We show that the enhanced
adaptive protocol effectively does away with this step, which
results in significant privacy savings, and only a minor loss in
approximation accuracy.

We investigate the effect of data density on our approach.
We show that, as expected, the adaptive algorithm works more
efficiently in dense regions, which allow it to gather informa-
tion more effectively as compared to sparse regions. We also
analyze the effect of overfitting on our model explanations.
We show that the overfitted models require slightly more
privacy spending due to complex decision boundaries, which
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Fig. 1: Comparison of the total privacy budget spent after each query
and histogram of explanation loss by different algorithms for ACS13.

TABLE I: Examples of influence measures generated for Text movie
reviews dataset by DP-Explanation ε ≈ 0.1 and δ = 10−6, LIME
and MIM. Upwards (downwards) arrows indicate a high positive
(negative) influence of a word. Blue, red and green arrows correspond
to words selected to DP-Explanation, LIME, and MIM.

Movie Review

1. ...superb↑↑↑ performance by Natalie Portman... saying script bad↓
at times but I don’t↓↓... good↑ direction and excellent↑↑
performances↑↑...(Label:+1)

2. I never seen such horrible↑↑ special affects or acting... I
laughed↓↓↓ so hard on this its just stupid↑ I mean the movie is
so awful↑↑↑... (Lable:-1)

offer less opportunity for adaptive savings. Finally, we show
that our algorithm can still provide accurate explanations in
the non-interactive phase. We could not include all results of
experiments in this abstract due to space constraint.
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