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Abstract—Can an adversary exploit model explanations to
infer sensitive information about the models’ training set? To
investigate this question, we first focus on membership inference
attacks: given a data point and a model explanation, the attacker’s
goal is to decide whether or not the point belongs to the
training data. We study this problem for three popular types
of transparency methods: gradient-based attribution methods,
perturbation-based attribution methods, and example-based in-
fluence measures. We develop membership inference attacks
based on these model explanations and extensively test them on a
variety of datasets. In settings where existing attacks based on the
loss are infeasible, we show that gradient-based explanations can
leak a significant amount of information about the individual
data points in the training set. We also show that record-
based measures can be effectively exploited for membership
inference attacks. More importantly, we design reconstruction
attacks against this class of model explanations. We demonstrate
that they can be exploited to recover significant parts of the
training set. Finally, we discuss the resistance of perturbation-
based attribution methods to existing attacks and link it to a
shortcoming of this type of explanation.
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I. INTRODUCTION

Machine learning models are making increasingly high-
stakes decisions in a variety of application domains, such
as healthcare, finance, and law [1]; driven by the need for
higher prediction accuracy, decision-making models are be-
coming increasingly more complex, and as a result, much
less understandable to various stakeholders. In other words,
decision-making models are often ‘black-boxes’: we have no
access to their inner workings, but only to their outputs.

Applying black-box AI decision-makers in high-stakes do-
mains is problematic: model designers face issues understand-
ing and debugging their code, and adapting it to new appli-
cation domains [2]; companies employing black-box models
may expose themselves to various risks (e.g. systematically
misclassifying some subgroup of their client base [3], or facing
the negative consequences of an automated decision [4]);
finally, clients (i.e. those on whom decisions are made) are at
risk of being misclassified, facing unwarranted automatic bias,
or simply frustrated at their lack of agency in the decision-
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making process leading e.g. to a right to explanation in the
European data privacy regulation GDPR [5].

This lack of transparency has resulted in mounting pressure
from the general public, the media, and government agencies;
several recent proposals advocate for the use of (automated)
transparency reports (also known as model explanations in
the literature) [5]. The machine learning (and greater CS)
community has taken up the call, offering several novel
explanation methods in the past few years and big companies
like Google [6] and IBM [7] are starting to offer explainable
AI as part of their machine learning suites.1

Transparency reports offer users some means of understand-
ing the underlying model and its decision making processes2.
By and large, they do so by offering users additional insights,
or information about the model, concerning the particular
decisions it made about them (or, in some cases, about users
like them).

Releasing additional information is a risky prospect from
a privacy perspective; however, despite the widespread work
on the design and implementation of model explanations, there
has been little effort to address any privacy concerns that arise
due to their release. This is where our work comes in. We
begin our investigation by asking the following question.

Can an adversary leverage model explanations to
infer private information about the training data of
the underlying model?

Our Contributions: We provide a comprehensive analy-
sis of information leakage through feature-based and example-
based model explanations. We identify what causes the leak-
age, and design inference algorithms to identify members of
the training set. For example-based explanations, our algo-
rithms can reconstruct a large fraction of the training data. To
the best of our knowledge, this paper is the first to analyze
the privacy risks of model explanations for the training set of
the underlying models.

We focus on two major attacks: membership inference
attacks [8] to infer the presence of individual data points

1See http://aix360.mybluemix.net/ and https://cloud.google.com/
explainable-ai

2See https://distill.pub/2018/building-blocks/ for a particularly intuitive and
interactive explanation method for neural network architectures.
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in the training set, and reconstruction attacks which aim at
recovering the training data points. We analyze feature-based
explanation algorithms, with an emphasis on gradient-based
methods [9], perturbation-based methods [10], and example-
based algorithms, with an emphasis on methods that report
influential data points [11].

We analyze what information gradient-based explanations
can leak about the training data, and compare our approach
to attacks that have access to the model’s loss on data points,
serving as the strongest membership inference attack.

We show that the variance of the gradient is a consid-
erable distinguisher between the members of the training
set and other data points from the same distribution. The
reason is that as the training algorithm converges, the gradient
decreases on all members of the training set, whereas for non-
members the variance can remain high.

Our experiments on synthetic datasets show that the dimen-
sionality of the data has a large influence on the connection
between the variance of the gradient and the membership
inference accuracy. This is related to the observation that
very low dimensional data is generally more resistant to
overfitting, whereas models on high dimensional data have
poorer performance on the test set.

We link the resistance of perturbation based explanations,
like SmoothGrad [10], to this type of attack to the fact that they
rely on out of distribution samples to generate an explanation.
This helps against membership inference, can however also be
seen as a major flaw of this type of explanation.

Example-based model explanations provide explain deci-
sions by outputting the most influential data points in the
training set for the decision on a particular point of interest.
This presents an obvious leak of training data. In particu-
lar, membership inference attacks become simple as training
points are frequently used to explain their own predictions.

However, a simple attack of randomly querying the model
results in poor coverage in terms of reconstructing the training
data. This is because a few certain training data records —
especially outliers and mislabeled training points — have
greater influence over most of the input space. Thus, after
a few queries, the set of reconstructed data points converges,
recovering no additional points.

We design an algorithm that identifies and constructs regions
of the input space where previously recovered points will
not be influential. This minimizes re-discovering previously
revealed points, thus increasing the coverage of the algorithm.
Through empirical evaluations on data with different dimen-
sionality, we show that an attacker can reconstruct (almost)
the entire dataset for high dimensional data.

For datasets with low dimensionality, we demonstrate our
heuristic’s adaptability: using recovered points, one can re-
cover up to 25% of the training set. As we show, the graph
structure, induced by the influence function over the training
set, tends to have a large strongly connected component and
the attacker is likely to recover at least all points in the
largest connected component. Complementary, as unusual

points tend to have a larger influence on the training process
we show that minorities have a high risk of being revealed.

We further study the effectiveness of membership inference
attacks based on additional feature-based explanations (includ-
ing Integrated Gradients and DeepLIFT). These membership
inference attacks achieve comparable, albeit weaker, success
than gradient-based attacks. We also present the result of
studying the influence of dataset size on the success of
membership inference for influence based explanations.
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