THE MARRIAGE OF FULLY HOMOMORPHIC ENCRYPTION AND BLOCKCHAIN

Ravital Solomon, NuCypher

## WHAT IS A PRIVATE TRANSACTION?

- "Privacy": Confidential vs. Anonymous
  - Confidential = hides inputs/outputs of transaction
  - Anonymous = confidential AND hides users involved

#### • Private Transaction

- Minimum: Hides transaction amount, balances
- Ideal: Hides users involved!
- Seen in....Zcash, Monero
- Private Smart Contract
  - Viewed as <u>extension</u> to private transactions
  - Simple: Voting, Auctions (+)
  - Advanced: Financial derivatives  $(\cdot)$

# DISSECTING A PRIVATE TRANSACTION



#### Ingredients:

#### 1. Additively Homomorphic Encryption/Commitments

- Enc(a) + Enc(b) = Enc(a+b)
- Enc(user's balance) + Enc(trans amnt) = Enc(user's balance after transfer)

#### 2. Zero-Knowledge Proofs (ZKP)

- Prove transfer was done correctly without revealing balances, amount to others
- Efficient ZKPs: SNARKs (Zcash), STARKs, Bulletproofs (Monero)

# THE FINAL BUILDING BLOCK?



### Fully Homomorphic Encryption (FHE)

- Additively Homomorphic: Enc(a) + Enc(b) = Enc(a + b)
- *Multiplicatively* Homomorphic: Enc(a) · Enc(b) = Enc(a · b)
- Will allow for greater variety of functions to be represented in private smart contracts!



## CHALLENGES USING FHE IN BLOCKCHAIN

### 1. Efficiency

- Newer schemes more efficient for certain use cases (e.g. Microsoft's SEAL, HELib)
- "Basic" encryption scheme—Ring-LWE encryption

### 2. Combining Efficient ZKPs with FHE

- Efficient ZKPs: Elliptic curves (often)
- FHE: Lattices
- Recent results ([DLS19]) provide ideas for efficient combination

## PRELIMINARY RESULTS

- Dual key-pair construction—best of both worlds (inspired by Zether [BAZ+19])
  - Allows for interaction between public and private accounts
  - Basic Ring-LWE Encryption Scheme (for confidential transactions)
  - Elliptic Curves/Hashes (for public transactions)
  - Ring-LWE encryption scheme sits inside certain FHE schemes
- Prototype of [DLS19]
  - Ring-LWE Encryption + Bulletproofs
  - Backbone of confidential transactions



## PRELIMINARY RESULTS

- Prototype of [DLS19]\*
  - Performed on Intel i7 @ 2.6 GHz
  - Application to verifiable encryption (using ring-lwe encryption + bulletproofs variant)
  - Encrypt in <1.3ms; decrypt in <600µs on average

| Secp256k1                | 1 thread | 6 threads | Curve25519               | 1 thread | 6 threads |
|--------------------------|----------|-----------|--------------------------|----------|-----------|
| Prover time              | 70s      | 14.9s     | Prover time              | 34.6s    | 8.2s      |
| Verifier time            | 47s      | 9.7s      | Verifier time            | 23.7s    | 5.2s      |
| Initial proof generation | 16s      | 3.23s     | Initial proof generation | 2.15s    | 434ms     |