
Poster: Zero-delay Lightweight Defenses against
Website Fingerprinting

Jiajun GONG
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
jgongac@connect.ust.hk

Tao WANG
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China
taow@cse.ust.hk

Abstract—Website Fingerprinting (WF) attacks threaten user
privacy on anonymity networks because they can be used by
network surveillants to identify the webpage being visited by
extracting features from network traffic. A number of defenses
have been put forward to mitigate the threat of WF, but they
are limited: some have been defeated by stronger WF attacks,
some are too expensive in overhead, while others are impractical
to deploy.

In this work, we propose two novel zero-delay lightweight
defenses, FRONT and GLUE. We find that WF attacks rely on
the feature-rich trace front, so FRONT focuses on obfuscating
the trace front with dummy packets. It also randomizes the
number and distribution of dummy packets for trace-to-trace
randomness to impede the attacker’s learning process. GLUE
adds dummy packets between separate traces so that they appear
to the attacker as a long consecutive trace, rendering the attacker
unable to find their start or end points, let alone classify them.
Our experiments show that with only 18% data overhead, our
first defenses FRONT outperforms the best known lightweight
defense, WTF-PAD, which has a 50% data overhead. With
around 10%–50% data overhead, our second defense GLUE can
lower the accuracy and precision of the best WF attacks to a
degree comparable with the best heavyweight defenses.

Index Terms—Network Privacy, Network Traffic analysis,
Website Fingerprinting

I. PROBLEM DESCRIPTION

A. Overview

Tor, an anonymity network based on onion routing [1],
has become one of the most popular privacy enhancing tech-
nologies. However, it is shown to be vulnerable to Website
Fingerprinting (WF), a kind of traffic analysis attack where
a local attacker passively eavesdrops on network traffic to
find out which webpage a client is visiting. WF succeeds by
observing packet patterns such as the number of outgoing and
incoming packets, packet rates, packet timing, and the ordering
of packets. (WF attacks do not need to break encryption.)
Hence, our goal is to design a defense such that it efficiently
weakens WF attacks with low data overhead (i.e., adding few
dummy packets) and zero latency overhead (i.e., delaying true
packets).

B. Threat Model

We assume an WF attacker sits between a Tor user and
the Tor network. The attacker only passively monitors user’s
network traffic without modifying, dropping or delaying any

TABLE I
DEFENSE PARAMETERS AND VARIABLES IN FRONT.

Notation Parameter

Parameters

Nc Client’s padding budget
Ns Proxy’s padding budget

Wmin Minimum padding time
Wmax Maximum padding time

Variables

nc ← Ū(1, Nc) Number of outgoing dummy packets
ns ← Ū(1, Ns) Number of incoming dummy packets

wc ← U(Wmin,Wmax) Client’s padding window
ws ← U(Wmin,Wmax) Proxy’s padding window

packet to find out which webpage is being visited. Anyone
local to the user could be a potential WF attacker, such as ISP
or even the entry node of the Tor network.

II. DEFENSE DESCRIPTION

A. FRONT

The first zero-delay defenses we propose is called FRONT,
Front Randomized Obfuscation of Network Traffic.

1) Intuition:
• Obfuscating feature-rich trace fronts. The first few

seconds of a trace (i.e., the trace front) leaks the most
useful features for WF classification. That is because the
trace front corresponds to loading HTML of a webpage
and it is usually very unique. Thus we dedicate most of
our data budget to obfuscating the trace front, instead of
spreading them evenly over the trace.

• Trace-to-trace randomness. FRONT adds dummy pack-
ets in a highly random manner, ensuring that different
traces of the same webpage look different to each other
in total length, packet ordering, and packet directions. To
do so, it randomizes the data budget and the region where
we inject dummy packets.

2) Defense Design: There are three steps in using FRONT
to defend a trace: sample a number of dummy packets, sample
a padding window size and schedule dummy packets. Its
parameters are summarized in Table I.

a) Sample a number of dummy packets: Nc and Ns are
two parameters determining the data overhead of FRONT,
respectively representing the client’s padding budget and the
proxy’s padding budget. For each trace, the client samples nc

from the discretized uniform distribution between 1 and Nc,
denoted as Ū(1, Nc); the proxy samples ns from Ū(1, Ns).



nc and ns are the actual number of dummy packets they will
inject into that trace.

b) Sample a padding window: FRONT spends most of
its budget obfuscating trace fronts. To do so, both client and
proxy will first generate a padding window, the time interval
where most dummy packets are expected to be injected into
the original trace. For each trace, the client samples wc from
the uniform distribution between Wmin and Wmax, denoted
as U(Wmin,Wmax); the proxy samples ws from the same
distribution. The reason we set a lower bound Wmin, instead
of 0, is to ensure that the generated padding window size is
not too small; if it is too small, the defense may require an
extreme bandwidth rate to support.

c) Schedule dummy packets: After sampling the above
variables, the client and proxy generate separate timetables to
schedule when their respective nc and ns dummy packets will
be sent. They generate the timestamps by sampling nc and ns

times from a negative exponential distribution. Its probability
density function is:

f(t;w) =

{
2
we−

2
w t t ≥ 0

0 t < 0
,

where w is wc for the client and ws for the proxy. Both client
and proxy send true packets with no delays and send dummy
packets according to their own timetable. When webpage
loading finishes, any unsent packets left in the timetable are
simply dropped.

The choice of Nc and Ns depends on the amount of data
budget we want to introduce to trade for privacy. We also find
that it is better to set 1.5Nc < Nw < 3Nc. Wmin should
be set according to the network bandwidth. Wmax controls
the width of the padding window. We set Wmax = 8s in our
experiments to cover all trace fronts while avoiding dropping
too many dummy packets.

B. GLUE

1) Intuition: GLUE exploits another weakness of WF at-
tacks — it is hard to decide the number of traces and further
split them given ` consecutive web page loadings. Thus, GLUE
inject “glue noise” between traces to connect them together.
Then an attacker only see a long trace consisting of ` different
visits. GLUE also integrates FRONT to protect the trace front.

2) Defense Design: GLUE switches in three modes, de-
scribed as follows.

a) Front Mode: Starting in Front Mode, our defense
waits for the client to visit a webpage. When the client does
so, we will add dummy packets according to our FRONT
defense, as described in previous sections. We will also sample
the client’s packet inter-arrival times here to obtain some
distribution I . After the client finishes visiting the webpage,
we sample t∆ ∈ U(I2̄0, I8̄0), wait for time t∆, then switch to
Glue Mode.

b) Glue Mode: In Glue Mode, the client and proxy send
each other dummy packets in such a way that it looks as if
the client decided to visit a new, random webpage. They will
do so for at most time dmax. They immediately stop doing so

if the client actually decides to visit a webpage before dmax

has passed: the client will notify the proxy to terminate Glue
Mode as well. If the client dwells on the webpage for longer
than dmax, the algorithm will consider the client inactive and
return to Front Mode. Otherwise, it will go to Back Mode.

c) Back Mode: In Back Mode, the client is visiting
another webpage. This is like Front Mode, with the difference
that we add no dummy packets whatsoever. We still sample
packet inter-arrival times and switch back to Glue Mode after
waiting for a sampled t∆.

III. PRELIMINARY EVALUATION

We do experiments on Wang’s dataset [2]. Their dataset
contains 100 monitored webpages with 90 instances each
together with 9000 unmonitored webpages. We use three state-
of-art WF attacks [2]–[4] to test our defense. We compare
our defenses with a state-of-art lightweight defense, WTF-
PAD [5].

A. Evaluation of FRONT

No defenseWTF-PAD (50%) FT-1 (18%) FT-2 (45%)
0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e(
%

)

kNN
CUMUL
kFP

No defenseWTF-PAD (50%) FT-1 (18%) FT-2 (45%)
0

20

40

60

80

100

Pr
ec

isi
on

 (%
)

kNN
CUMUL
kFP

Fig. 1. FRONT performance against WF attacks. We also mark the data
overhead on X-axis.

B. Evaluation of GLUE

2 4 6 8 10 12 14 160

4

8

12

16

20

TP
R 

(%
)

kNN
CUMUL
kFP

2 4 6 8 10 12 14 160

2

4

6

8

10

Pr
ec

isi
on

 (%
)

kNN
CUMUL
kFP

Fig. 2. GLUE performance vary ` against WF attacks.

IV. DECLARATION

This work was submitted to USENIX Security Symposium
2019 and is currently under review, thus unpublished.

REFERENCES

[1] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The Second
Generation Onion Router,” in USENIX Security Symposium, 2004.

[2] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
Attacks and Provable Defenses for Website Fingerprinting,” in USENIX
Security Symposium, 2014.

[3] J. Hayes and G. Danezis, “k-fingerprinting: A Robust Scalable Website
Fingerprinting Technique,” in USENIX Security Symposium, 2016.

[4] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website Fingerprinting at Internet Scale,” in Network &
Distributed System Security Symposium (NDSS), 2016.

[5] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
Efficient Website Fingerprinting Defense,” in European Symposium on
Research in Computer Security. Springer, 2016.


