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Abstract—The privacy parameter, ε, of differential privacy is
used to quantify the privacy risk posed by revealing statistics
calculated on private and sensitive data. Though it has an
intuitive theoretical explanation, choosing an appropriate value
is non-trivial. We present a systematic and methodical way to
calculate ε once the necessary constraints are given. In order to
derive optimal values and an upper bound on epsilon, we use the
confidence probability approach, Chebyshev’s and McDiarmids
inequalities.

I. INTRODUCTION

Assigning the ideal and optimal value of ε is critical, as it
allows us to strike the right balance between accuracy and
privacy. Regrettably, there has been no clear and uniform
indications in prior work as to the bounds or value for ε.
[1] mentioned that selecting ε is a social issue and depends
on different scenarios. They used random values like 0.1, ln2
etc. [2] used values running from 0.05 to 0.2. An economic
method based on compensation was proposed by [3]. The
individual contributing his/her data can expect compensation
from the data analyst who uses the individual’s information
for performing experiments. The data analyst can’t exceed
the budget assigned to him. Though there have been studies
related to the privacy-accuracy trade-off, evaluating the value
for an optimalεusing a mathematical and logical reasoning
based approach is yet to be adopted. In this abstract, we make
use of the probability distribution and standard deviation to
come up with theorems to find the optimal value and upper
bound of epsilon. For example, we make use of the confidence
probability that a value lies between any two given points and
for that bound we derive an optimal epsilon. Our approach
offers a more intuitive way to calculate the optimal value
ofεbased on a myriad of parameters.

II. OUR CONTRIBUTIONS

We propose an approach of calculating the upper bound of
ε given the standard deviation σ of the probability distribution
P , and two different approaches for calculating the optimal
value of ε when different information, specifically, the proba-
bility density function f(x), or the standard deviation σ of the
probability distribution that A draws noise from are given.

III. UPPER BOUND OF ε

In order to prove the upper bound of ε, we prove a lemma,
Lemma 1, that will be used while proving Theorem 1.

Lemma 1. For any ε or (ε,δ)-differential private mechanism
A drawing noise from a probability distribution P , the stan-
dard deviation, σ, of the probability distribution satisfies the
relation,

σ ∝ 1

ε
.

Theorem 1 (Upper bound of ε). Given an ε or (ε, δ)-
differential private mechanism A, where the random noise
X is drawn from probability distribution P with standard
deviation σ = M

ε for some real number M , and given a
probability p then the following inequality holds:

|A(D)− q(D)| ≤ w · q(D),

where 1 > w > 0, and

ε ≤ M

w · q(D)
√

1− p
.

The proof of Theorem 1 makes use of the well-known
Chebyshev’s inequality.

The upper bound of ε gives us the maximum theoretical
privacy loss from applying an ε or (ε,δ)-differential private
mechanism A using additive random noise X . We will calcu-
late the privacy loss for Laplacian mechanism. For Laplacian
mechanism, σ = ∆

√
2

ε , thus

ε ≤ ∆
√

2

w · q(D)
√

1− p

IV. OPTIMAL ε

In this section, we present 2 approaches (Theorem 2 and
Theorem 3) to find the optimal ε given the probability density
function f(x) or standard deviation σ of the probability
distribution P . The ‘optimal’ epsilon can be defined as the
epsilon which bounds the noisy query output within a distance
of c and with a probability p from the original output.

Theorem 2 (Optimal ε based on f(x)). Given an ε or (ε, δ)-
differential private mechanism A, where the random noise X



is drawn from probability distribution P with probability den-
sity function f(x), a real positive number c, and probability
p such that

Pr [|A(D)− q(D)| < c] = p

Solving the following equation given a certain f(x) yields an
optimal ε:

p =

∫ c

−c
f(x)dx.

We use the idea of confidence probability in our proof.

Proof. We can interpret the probability p as the confidence
probability. Hence,

p = Pr[|A(D)− q(D)| ≤ c]
= Pr[|X| ≤ c]
= Pr[−c < X < c]

=

∫ c

−c
f(x)dx,

and we can solve for ε once we know f(x).

For Laplacian mechanism, we know that

f(x) =
1

2λ
e−

|x|
λ ,

where λ = ∆
ε . Thus,

p =

∫ c

−c

1

2λ
e−

|x|
λ dx

= 1− e− cε∆ .

Solving for ε, we have

ε = −∆ ln(1− p)
c

.

Theorem 3 presents another way of calculating the optimal
ε value.

Theorem 3 (Optimal ε based on σ). Given an ε or (ε, δ)-
differential private mechanism A, where the random noise
X is drawn from probability distribution P with standard
deviation σ = M

ε for some real number M and mean µ = 0,
a real positive number c, and the probability p such that

Pr(|A(D)− q(D)| < c) > p,

then the optimal value of ε corresponds to

ε =
|M |
c

√
ln 2− ln(1− p).

The proof of Theorem 3 uses the McDiarmid’s inequality,
which is a result of AzumaHoeffding inequality.

This inequality provides another ideal ε for any ε or (ε,δ)-
differential private mechanism A using additive random noise
X . We will calculate the ideal ε for the Laplacian mechanism.

For the Laplacian mechanism, σ = ∆
√

2
ε , thus,

ε =
∆

c

√
2(ln 2− ln(1− p))

Though the two approaches rely on knowing different infor-
mation about the probability distribution P , specifically, one is
based on the probability density function f(x) and the other
is based on the standard deviation σ of P , there are many
instances in which we will be given all the information that we
need about the probability distribution. In this case, it is natural
to ponder whichεwill have better performance. We solve this
problem by taking the ratio of εs from Theorem 2 and Theorem
3. Thus

ε2 = −∆ ln(1− p)
c

ε3 =
∆

c

√
2(ln 2− ln(1− p))

ε2
ε3

=
−∆ ln(1−p)

c
∆
c

√
2(ln 2− ln(1− p))

= − ln(1− p)√
2(ln 2− ln(1− p))

Fig. 1 is the graph of the ratio with respect to probability
parameter p. After setting the ratio to be equal to 1, we can
then calculate the threshold probability which determines the
performance of the optimal εs calculated from the two different
approaches.

Fig. 1. Ratio: Laplacian Distribution

V. CONCLUSION AND FUTURE WORK

We have presented different theorems to calculate ε and
would like to explore other intuitive and mathematically-
supported ways to derive ε.
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