
Poster: SwitchMan: An Easy-to-Use Approach to Secure User Input and Output 1

Shengbao Zheng∗, Zhengyu Zhou∗, Heyi Tang† and Xiaowei Yang∗

∗Duke University, †Tsinghua University
∗{szheng, zzy, xwy}@cs.duke.edu, †tangheyi.09@gmail.com

I. INTRODUCTION

Modern operating systems for personal computers (includ-

ing Linux, MAC, and Windows) provide user-level APIs for

an application to access the I/O paths of another application.

This design facilitates information sharing between applica-

tions, enabling applications such as screenshots. However,

it also enables user-level malware to log a user’s keystrokes

or scrape a user’s screen output. As an example, between

2013 and 2015, attackers used the Carbanak malware [1]

to infect bank computers and then recorded videos of a

victim’s screen and keystrokes to obtain sensitive banking

information. They successfully stole money from around 100
financial institutions and the total financial loss amounted to

almost one billion dollars.

Previous proposals to address this challenge fall into four

broad categories. Work in the first category protects a user’s

I/O paths at the hardware level. An example is the Intel

Protected Transaction Display (PTD) solution [2]. Work in

the second category proposes to use a second mobile device

as a trusted input/output device [3]. Work in the third cate-

gory uses virtual machines to isolate trusted applications [4].

Finally, work in the fourth category proposes to enhance

an OS by implementing fine-grained access control for I/O

interfaces so that one application cannot access another

application’s I/O paths by default [5].

Each of the previous solutions requires a unique trusted

computing base (TCBs). However, they all require sig-

nificant user management to achieve the desired level of

security. A user needs to decide which data are sensitive

and then switch to a trusted hardware (e.g. a mobile device)

or a trusted terminal (e.g., one runs inside a trusted virtual

machine) or both to input/output sensitive data. We hypoth-

esize that it is challenging for a non-expert user to manage

these tasks. Therefore, it is beneficial to explore a design

alternative that can automatically manage the switching to

sensitive data input/output without user involvement.

In this work1, we propose SwitchMan, an architecture

that enables a server to switch a user to a secure terminal

for sensitive user input/output. At the heart of SwitchMan

lies a protocol that enables a remote server (e.g. a web

server) to embed a secure terminal switching request inside

its traffic stream even if the client’s software (e.g. a browser)

1The poster is associated with an S&P Workshop paper. It will appear
at 2019 International Workshop on Privacy Engineering (IWPE19).

is untrusted. The TCB running on the client will intercept

the request and switch the user to a secure terminal.

II. ASSUMPSION

SwitchMan’s design assumes that a user’s OS kernel and

the graphical system distributed with the OS can be trusted.

We make this assumption mainly because of our design

goals. Trusting the OS makes SwitchMan easy-to-use. By

trusting the OS, we can provide a turnkey solution to the

user. An OS vendor can distribute SwitchMan with the OS

and turn it on by default. We expect that ease of use can

increase the chance of user adoption.

Admittedly, trusting the OS has the drawback that when

a user’s OS is compromised, SwitchMan cannot secure the

access to sensitive user input and output data. However, we

believe there are a few remedies that can reduce the security

risk of this assumption.

First, there exist techniques such as the Integrated Mea-

surement Architecture (IMA) that can measure and attest

an OS’s integrity. Second, trusting an OS significantly re-

duces the TCB compared to the status quo. Today, if one

application residing in a user’s account is compromised, the

application can steal sensitive user input/output. We obtain

data from the Common Vulnerabilities and Exposures (CVE)

dataset [6] for the time period from 2013 to 2018. We find

that the percentage of privilege escalation vulnerabilities

and root privilege vulnerabilities among all vulnerabilities

are in the range of [3.01%, 9.34%] and [0.17%, 0.65%]
respectively. This result shows that the number of OS

vulnerabilities is much fewer than the total number of

vulnerabilities, suggesting that trusting the OS rather than

all applications can significant reduce the security risk of

data leakage. Finally, there exists market competition among

OS vendors. The OS vendors are accountable for security

breaches caused by OS compromises, and accountability can

motivate an OS vendor to improve its security, reducing the

risk that the OS is compromised.

III. SWITCHMAN DESIGN

1) SwitchMan Architecture: Figure 1 shows the Switch-

Man’s architecture. A computer’s OS assigns two user

accounts to one user. One is a regular account, where the

user has the freedom to run any application. The other is

a protected account coming with a set of pre-configured

software that the OS manufacturer trusts. A main purpose



Virtual 
Terminal 2

Graphic Server

Trusted I/O Proxy

Virtual 
Terminal 1

Protected Account

Filter
Sensitive?

Yes

No

To / From Network

I/O 

Devices

Kernel 

User Space

SwitchMan

Untrusted 

Browser

Regular Account

Graphic Server

App ..

Figure 1. The SwitchMan Architecture.

of this account is to provide a trusted terminal for users

to input/output sensitive data. Each user account has its

own display server. Applications running under the regular

account cannot connect to the protected account’s display

server. Each server uses its own virtual terminal so that their

I/O paths are isolated at the software level.

The design of SwitchMan includes four main components:

1) a program called the Trusted I/O Proxy (TIOP) running

under a user’s protected account; 2) a kernel module called

SwitchMan for managing the switching between a user’s

two accounts; 3) a kernel filter for managing sensitive

network input/output data; and 4) a network protocol called

SwitchMan’s Network Protocol (SNP) that enables a remote

server to send a request to a user’s OS to switch the user

to his protected account for accessing sensitive input/output

data.

2) Trusted Input/Output Proxy(TIOP): In the SwitchMan

design, a user interacts with sensitive data via TIOP. One

can view TIOP as a simple web browser distributed by a

user’s OS vendor. It displays the sensitive output received

from a remote server and takes a user’s input. TIOP is the

only application connected to the virtual terminal running

under the protected account.

3) SwitchMan’s Network Protocol (SNP): SwitchMan’s

design includes an HTTPS-based protocol called SNP. SNP

enables a remote server to securely request the SwitchMan

OS to switch a user to his protected account. Figure 2 and

Algorithm 1 describes how SNP works.

REFERENCES

[1] Kaspersky Lab, “ The Great Bank Robbery: Carbanak APT,”
https://securelist.com/the-great-bank-robbery-the-carbanak-
apt/68732/, 2015.

[2] Intel, “Intel Identity Protection Technology with Protected
Transaction Display,” https://www.intel.com/content/www/

BrowserTIOP

Switch

Man

Kernel

Filter

Server
(1)

(2)

(3)

(3)

Client Server

(4)

kernel

user space

Figure 2. This figure shows how SwitchMan’s network protocol
works at a high level. 1) A client connects a server via HTTPS.
2) If a server desires to receive sensitive data or display sensitive
data, it notifies the client’s kernel. The client’s OS intercepts
this signal, and switches an eligible server session to a user’s
protected account. 3) The user uses the trusted TIOP program
to interact with the server. 4) The user resumes his previous
session in his regular account after the TIOP session finishes.

Algorithm 1 SNP Protocol

// TCP Handshake.

ClientOS → Server : SY N w/ Opt(SM)
ClientOS ← Server : SY NACK w/ Opt(SM Echo)
ClientOS → Server : ACK

// Server Initiated Switching

Browser → Server : Request

Browser ← Server : Normal Data

// First half of the switching request.

TIOP ← Server : TCP Option(nonce1, nonceid)
// Second half of the switching request.

Browser ← Server :
https(JS(URLsensitive, nonce2, nonceid, signature))
// TIOP Connects to the Server

TIOP → Server :
https(URLsensitive, nonce1, nonce2, nonce id)
TIOP ↔ Server : Sensitive Data

us/en/architecture-and-technology/identity-protection/
identity-protection-technology-general.html, 2012.

[3] J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the ether:
A framework for securing sensitive user input,” in USENIX
ATC, 2006.

[4] J. Rutkowska and R. Wojtczuk, “Qubes OS Architecture,”
Invisible Things Lab Tech Report, p. 54, 2010.

[5] M. James, “Secure and Simple Sandboxing in SELinux,”
https://www.slideshare.net/jamesmorris/secure-and-simple-
sandboxing-in-selinux, 2009.

[6] CVE, “Common vulnerabilities and exposures,” https://cve.
mitre.org.

https://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
https://cve.mitre.org
https://cve.mitre.org

	Introduction
	Assumpsion
	SwitchMan Design
	SwitchMan Architecture
	Trusted Input/Output Proxy(TIOP)
	SwitchMan's Network Protocol (SNP)


	References

