
Poster: GIPSim: Low-level Power Modeling for Resiliency
from Side Channel Attacks on GPUs

Saoni Mukherjee, Yunsi Fei, David Kaeli
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA
{saoni, yfei, kaeli}@ece.neu.edu

I. INTRODUCTION

With the emergence of ubiquitous computing, smart devices are
able to communicate with each other unobtrusively, enabling users
to access information and services anywhere, and at any time. Often
these applications require real-time performance when performing
cryptographic operations. Since GPUs accelerate workloads using
thousands of parallel threads running on thousands of hardware
cores and providing high throughput, they can be used in these
devices to accelerate cryptographic computations. Both unmanned
aerial vehicles (UAV) and smart grids are equipped with GPUs
to provide high throughput to encrypt/decrypt information in real-
time [1], [2]. For example, in smart grid applications, highly sensitive
data, including power consumption, pricing, and outage alerts are en-
crypted and exchanged between power meters and the utility company
in real-time. An attack on such critical and dynamic information can
significantly impact resource availability and costs. The cryptographic
algorithms running on a GPU can be exploited to serve as a first line
of defense against attacks, providing protection for the critical data
stored on these devices.

Although GPUs are leveraged to speed up cryptographic algorithms
and yield higher performance, often these accelerators fail to protect
the computation against Side-Channel Attacks (SCA). SCA exploits
the physical implementation of a cryptographic system, rather than
the inherent theoretical weaknesses of the algorithm itself. Previous
work has demonstrated successful side channel attacks on CPUs,
field-programmable gate arrays (FPGAs), application-specific inte-
grated circuits (ASICs) and GPUs. While these devices are highly
vulnerable to SCA, the cryptographic algorithms running on these
devices are mathematically proven to be secure. To expose a potential
vulnerability, an external manifestation (i.e., power consumption, pro-
cessing time, electromagnetic emission) is measured by an attacker
to identify patterns in program execution. Among the previously
reported power side-channel attacks, simple power analysis (SPA),
differential power analysis (DPA), and correlation power analysis
(CPA) have been extensively explored. These attacks inadvertently
leak information about the execution in the system [3], [4]. However,
to understand how to defend against these attacks, we need to
understand how the underlying microarchitecture leaks side-channel
information to the attacker.

To begin to understand leakage better, instead of building yet an-
other power model for the GPU, we have designed a data-dependent
power simulation framework to characterize power leakage. Our
model considers the hamming distance (HD) of data values used
during program execution, a key element commonly exploited in
many power side-channel attacks. We then use our model to design
obfuscation approaches to thwart power SCAs.

Recent work has demonstrated different SCA on GPUs. Luo et
al. recover the 16-byte secret key of AES with Correlation Power
Analysis on a GPU [5], while Jiang et al. describe a timing attack

This work was supported in part by Semiconductor Research Corporation
(SRC and by the NSF STARSS Program).

using Correlation Timing Analysis [6]. More recently, Jian et al.
presented a timing attack using Differential Timing Analysis [7].

II. BACKGROUND

A. GPU basics and CUDA programming model

GPUs are basically co-processors that execute work offloaded by
the CPU host. This work focuses on a CUDA implementation, the
main API framework used to generate code for Nvidia GPUs. The
portion of the program that is executed on the GPU, is called a kernel.
The kernel is executed in the form of many parallel instances that
are mapped to a set of parallel threads. A stream is a sequence of
operations that are performed in order on the device. Multiple kernels
can be run using streams that are executed concurrently.

SASS is the low-level assembly language which is generated
during compilation of CUDA code. SASS executes natively on Nvidia
GPU hardware.

B. AES

Our implementation of AES-128 is based on the Electronic Code
Book mode [8]. AES-128 uses 10 rounds and each round performs
four processing steps: AddRoundKey, SubBytes, ShiftRows, and
MixColumns, except the initial and last rounds. At the beginning of
the encryption, the plaintext is loaded into the GPU’s global memory.
Each thread is assigned a portion of the data and copies it to the
local memory, based on its block and thread id. Once the encryption
completes, the ciphertext that lies in local memory is copied to global
memory, and then is transferred to the CPU memory. Running in ECB
mode, data blocks can be processed independently, thus depending
on the data size and resources available, the operation is highly
parallelizable.

C. Power leakage acquisition

Our implementation of AES has been tested on an Nvidia Kepler
K20c GPU. We use an Agilent MSOX4104A mixed signal oscil-
loscope to obtain power measurements. Power traces are captured
by inserting a small resistor (0.1Ω) in series with the GPU card’s
external power supply line. The voltage drop across the resistor is
recorded during encryption on the GPU.

III. GIPSIM FRAMEWORK

The goal of this work is to deliver GIPSim (GPU Instruction-
level Power SIMulator), a framework to enable security researchers
to reason about side-channel leakage present in the context of a
GPU execution-driven simulator. In this contribution, we show that
GIPSim can provide accurate power estimation while running CUDA
programs on an Nvidia GPU.

To characterize SASS-code level data-dependent execution, GIP-
Sim captures data-dependent power dissipation. We base our model
off the power modeling work presented by Tiwari et. al. [9]. Our
power model estimates the deterministic part of the power consump-
tion, for example, the Hamming distance, which computes the number
of logic changes (i.e., 0-to-1 or 1-to-0) in the datapath. We start



with a baseline model which predicts the power consumption of an
instruction for a specific data value. We then collect a rich corpus of
power traces for each opcode. Instructions are executed with different
input data values, producing a range of Hamming Distances (HDs),
which are computed relative to an input value of zero. For each
opcode-HD pair, we capture 1, 000 instances of the same instruction
opcode, seeded with the same input data (or same HD), and then
collect the average power used over the 1, 000 traces. We label this
power value the base cost for that opcode-HD pair.

We observe low variance (0.039) for the average power consump-
tion measured across a full run of the kernel. Given this low value,
the power consumed if very stable. We repeat this measurement
for different HD values. To reduce any noise introduced by the
frequency-voltage regulator of the GPU, we perform calibration to
avoid excessive noise in our measurements. We find that as we
increase HD in the plaintext data values, the power consumption
linearly increases as well, which indicates that leakage exists in
the power consumption. We also find that the power consumed for
two instances of the same instruction to be highly dependent upon
the instruction that follows them. So along with base cost, we also
measure the power consumed due to switching between instructions.
We add this to our baseline model, predicting power for the inter-
instruction overhead. To capture this factor, we select a pair of
instructions and run them through our model in the same way we did
for the single opcode-HD pair. In this case, we choose two instruction
pairs and collect the average power consumption for that pair across
the traces. Based on this behavior, we can interpolate the power values
for the data values we have not measured yet for both base cost and
inter-instruction overhead.

For each instruction opcode, as we increase the HD increases, we
see a linear increase in power consumption. So if we plot the power
values with respect to the HD for an opcode, we obtain a straight
line. Based on the slope of this line, the power consumption for any
opcode instruction i can be computed as:

Pi = Pmincost + slopei ×HD(i) + poverhead + pextra (1)

where Pi is the total power consumption for a particular instruction
i, Pmincost is the base cost for running that instruction when the
data value is 0, and slopei is the slope of the line that tracks the
power consumption for different HDs, for instruction i. HD(i) is
the HD of the data values for instruction i. While poverhead is the
cost for switching from the previous instruction, pextra includes all
other unrelated power consumption.

IV. EVALUATION OF THE MODEL

The Pearson Correlation Coefficient (PCC) is a measure of the lin-
ear correlation between two variables. PCC values can range between
+1 and -1, where 1 indicates a highly positive linear correlation, 0
indicates no correlation, and -1 indicates a highly negative linear
correlation. We use PCC to determine whether the power predicted
by GIPSim has any correlation with the power measured from the
device.

To achieve this, we pick ten random input text files t0, ..., t9 as
inputs to AES-128 and run them through GIPSim to measure the
predicted power Gt0, . . . , Gt9. We also run the same input text files
on the real device and measure power Rt0, . . . , Rt9. Next, we take
each Ri and compute the correlation with all Gis. The goal is to find
the pairs < Gi, Ri > with the same ordinal index value i (where i is
the input file number t0, . . . , t9) which exhibit the highest correlation.
We expect the pair of traces (simulated and measured) that used the
same input texts values to produce the highest correlations. The PCC
values for each pair < Gi, Ri > are greater than 0.8, suggesting that
the results are highly correlated. In Figure 1, we show four such cases
for < Gi, Ri > and we observe that the top ten pairs < Gi, Ri >

Fig. 1. Pearson Correlation between the modeled power and measured power.

produce a 40% higher correlation that the next most similar trace,
demonstrating the strong predictability of GIPSim.

V. CONCLUSION AND ONGOING WORK

In this work, we presented a novel model for GPU power leakage,
GIPSim. The model tracks power at the SASS level for an Nvidia
GPUs. Our model can predict a base cost and inter-instruction
overhead for different instructions with different input data values,
which can be used to design obfuscation approaches, hiding the power
profile of cryptographic applications such AES.

We showed that GIPSim not only accurately characterizes power
consumption on a GPU, but can also thwart power-based attacks. We
already know how to launch power attacks using SPA or DPA. To
thwart an attack, we can use GIPSim to add noise in the power profile
for an encryption execution.

Our ongoing work investigates how to automatically select instruc-
tions that will run concurrently with the AES kernel, such that the
strength of the power signal will be low, which in turn will make key
recovery much more challening. If the variance in the signal is high,
the necessary number of samples may render the attack infeasible.
These attacks are possible due to power fluctuations observed during
byte substitution of an AES encryption in the last round. To prevent
this leakage, we use GIPSim to automatically select instructions from
the GIPSim corpus so that the power consumption is indistinguishable
while running encryption.

REFERENCES

[1] V. Roberge and M. Tarbouchi, “Fast path planning for unmanned aerial
vehicle using embedded GPU System,” in 2017 14th International Multi-
Conference on Systems, Signals and Devices, SSD 2017, vol. 2017-
January, pp. 145–150, 2017.

[2] R. C. Green, L. Wang, and M. Alam, “Applications and trends of high
performance computing for electric power systems: Focusing on smart
grid,” IEEE Transactions on Smart Grid, 2013.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in cryptologyCRYPTO99, pp. 789–789, Springer, 1999.

[4] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 16–29, Springer, 2004.

[5] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel power
analysis of a gpu aes implementation,” in Computer Design (ICCD), 2015
33rd IEEE International Conference on, pp. 281–288, IEEE, 2015.

[6] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing attack
on a gpu,” in High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on, pp. 394–405, IEEE, 2016.

[7] Z. H. Jiang, Y. Fei, and D. Kaeli, “A novel side-channel timing attack on
gpus,” in Proceedings of the on Great Lakes Symposium on VLSI 2017,
pp. 167–172, ACM, 2017.

[8] P. Margara, “Engine-cuda, a cryptographic engine for cuda supported
devices,” in https://code.google.com/p/ engine-cuda/, 2015.

[9] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software:
A first step towards software power minimization,” IEEE Transactions on
Very Large Scale Integrated Systems, vol. 2, pp. 437–445, Dec. 1994.


