
Poster: Precise Dynamic Dataflow Tracking with
Proximal Gradients

Gabriel Ryan, Abhishek Shah, Dongdong She, Suman Jana
Columbia University

New York, USA
{gabe, dongdong, suman}@cs.columbia.edu, abhishek.shah@columbia.edu

Koustubha Bhat
Vrije Universiteit

Amsterdam, Netherlands
k.bhat@vu.nl

Abstract—Dataflow analysis is a fundamental technique in
the development of secure software. It has multiple security
applications in detecting attacks, searching for vulnerabilities,
and identifying privacy violations. Taint tracking is a type of
dataflow analysis is that tracks dataflow between a set of specified
sources and sinks. However, taint tracking suffers from high false
positives/negatives due to fundamentally imprecise propogation
rules, which limits its utility in real world applications.

We introduce a novel form of dynamic dataflow analysis, called
proximal gradient analysis (PGA), that not only provides much
more precise dataflow information than taint tracking, but also
more fine grained information dataflow behavior in the form of
a gradient. PGA uses proximal gradients to estimate derivatives
on program operations that are not numerically differentiable,
making it possible to propogate gradient estimates through a
program in the same way taint tracking propogates labels. By
using gradient to track dataflows, PGA naturally avoids many of
the propogation errors that occur in taint tracking. We evaluate
PGA on 7 widely used programs and show it achieves up to 39%
better precision that than taint while incurring lower average
overhead due to the increased precision.

Index Terms—poster, taint, dataflow, program analysis, nons-
mooth optimization, gradient

I. INTRODUCTION

Dataflow analysis is a fundamental technique in the de-
velopment of secure software. It has multiple security ap-
plications in detecting attacks, searching for vulnerabilities,
and identifying privacy violations [1], [5]. One of the most
effective techniques of dataflow analysis is taint tracking,
which tracks which internal variables are affected by the
input [3]. However, taint tracking suffers from high false
positives/negatives due to fundamentally imprecise propoga-
tion rules, which limits its utility in real world applications.

We introduce a novel form of dynamic program analy-
sis, called proximal gradient analysis (PGA), that not only
provides much more precise dataflow information than taint
tracking, but also more overall information about program
behavior in the form of a gradient. PGA uses proximal
gradients to estimate derivatives on program operations that are
not numerically differentiable, making it possible to propogate
gradient estimates through a program in the same way taint
tracking propogates labels [4]. By using gradient to track
dataflows, PGA naturally avoids many of the problems with
over approximation that occur in taint tracking.

Figure 2 gives an example of an operation on which PGA
provides more precise and fine grained dataflow information

taint source: x
taint sink: y
// x is a 4 byte int
int x = 0x12345678;
for (int i=0; i<6; i++){
 y[i] = x;
 x = x<<8;
}

Taint to y from x

Gradient of y wrt. x

y

1 1 1 1 1 1

1 256 2^16 2^24 0 0

Fig. 1. Example of a program in which an iterated shift operation on
an integer will cause over-tainting, while gradient will precisely identify
how the source variable (x) influences the sink(y). Deeper shades of red
indicate greater degrees of influence.
compared to taint tracking. The source integer x is left shifted
by a byte every iteration of the for loop and then assigned to a
position in the sink array y. After the first 4 iterations, all the
bytes of x’s initial value have been shifted out and x goes to 0.
At this point, there is no dataflow between x and the value of
y[i], since it will always be 0. PGA correctly identifies this,
and also identifies that changes in x have a much larger effect
on higher indexes in the array y. In contrast, taint tracking
will mark all of the integers in y with x’s label.

II. BACKGROUND

Our approach to program analysis draws on work in three
fields: Dyanmic Dataflow Analyis, Nonsmooth Optimization,
and Automatic Differentiation. Dynamic Dataflow Analysis
models the flow of data through a program by tracking variable
interactions and has applications in both compiler optimization
and detection of security vulnerabilities, but suffers from high
false positive rates that limit its utility. Nonsmooth Gradient
Approximation involves a collection of methods that have
been developed in the field of Nonsmooth Optimization for
approximating gradients in cases where the gradient cannot
be evaluated analytically. These methods make it possible to
approximate gradients on discrete and nonsmooth functions in
a principled way based on the local behavior of the function.
Finally, we draw on the field of Automatic Differentiation,
which involves methods for computing gradients over pro-
grams compused of semi smooth numerical operations, but not
general programs with discrete and nonsmooth operations.

To evaluate gradients over nonsmooth operations, we use
a method from the discrete optimization literature called
proximal gradients [4]. Proximal gradients use the minimum
point within a soft bounded region. This region is defined

by a cost function that increases quadratically with distance
from the evaluation point. Proximal gradients use a specialed
operator, called the proximal operator, which is defined as
follows when evaluated on a given point x̄:

proxf (x̄) = argminx

(
f (x) + 1

2 ||x− x̄||22
)

(1)

The notation argminx indicates that the operator selects the
value of x that minimizes both value of function f (x) and the
distance cost

(
1
2

)
||x − x̄||22 that increases quadratically with

the distance of x from x̄. Evaluating the proximal operator will
give the minimum point near the point at which it is evaluated.
This point can then be used to compute the largest directional
derivative in the region near the point.

prox∇f (x̄) =
f (x̄)− f (proxf (x̄))

x̄− proxf (x̄)
(2)

III. METHODOLOGY AND IMPLEMENTATION

We implement PGA as a new type of code sanitizer in
the LLVM Framework. LLVM is a compiler framework that
uses an Intermediate Representation that resembles high level
assembly for instrumentation and optimization [2]. Adding
instrumentation at the IR level allows it to be compiled into
the binary, making it significantly faster than instrumenting the
binary directly, and allowing it to operate on programs written
in any language supported by LLVM.

Our implementation is based on the dynamic taint tracking
sanitizer in LLVM, known as DataFlowSanitizer or dfsan. For
each byte of application memory, dfsan has two corresponding
bytes of shadow memory that store the label for that byte. In
order to track gradients, we modify dfsan to store a gradient
associated with each shadow label in a separate table. Every
operation is instrumented to evaluate its partial derivative and
generate a new label.

IV. EVALUATION

We perform tests on a set 5 widely used file parsing libraries
and 7 total programs, zlib, libxml, libjpeg, mupdf, and readelf,
objdump, and strip in binutils.

We evaluate the precision of PGA in comparison to DTA
against an estimate of ground truth dataflows. To estimate
ground truth, we mark bytes read from the input file as sources
and branch conditions as sinks, and execute the program while
modifying each byte in the input to determine which bytes
effect each branch condition. We focus on branch constraints
because they determine the behavior of a program, and be-
cause many security vulnerabilities in a program can only be
exploited when certain branches are taken. We generate sample
inputs by setting each byet 0, 255, and toggling each bit.

Results for this experiment are shown in table I. PGA
achieves as much as a 39% increase in precision and has
better f1 scores for all tested programs except mutool and
xmllint, which are equal. We also evaluate the runtime
of instrumented programs on the same inputs and find that
on average PGA has less than 5% more overhead than taint
tracking, and in the worst case was 20% greater.

Taint Gradient
Program Precision Recall F1 Precision Recall F1

minigzip 0.55 0.86 0.68 0.94 0.71 0.81
djpeg 0.63 0.73 0.68 0.96 0.61 0.74
mutool 1.0 0.01 0.02 1.0 0.01 0.02
xmllint 0.97 0.39 0.56 0.97 0.39 0.56
readelf 0.17 0.95 0.28 0.18 0.93 0.30
objdump 0.77 0.80 0.78 0.94 0.79 0.85
strip 0.60 0.83 0.70 0.88 0.79 0.84

TABLE I
SUMMARY OF PRECISION COMPARISON RESULTS FOR TAINT AND
GRADIENT ANALYSIS. BEST F1 SCORES FOR EACH PROGRAM ARE

HIGHLIGHTED. PGA OUTPERFORMS DTA ON ALL PROGRAMS EXCEPT
MUTOOL AND XMLLINT, WHICH ARE TIED.

0 20k 40k 60k 80k100k
Mutations

0

1000

2000

Ed
ge
 C
ov
er
ag
e

libxml

taint
gradient

0 20k 40k 60k 80k100k
Mutations

0

1000

2000

Ed
ge
 C
ov
er
ag
e

readelf

taint
gradient

Fig. 2. Comparison of gradient and taint guided fuzzing on libxml and
readelf. Gradient guided fuzzing achieves 0.57% greater edge coverage
on average after 100k mutations.

In addition to evaluated against estimated ground truth
dataflows, we also show PGA is an effective tool for guiding
mutation in fuzzers. We select bytes to be mutated based on the
magnitude of their derivates to branch conditions, and compare
to bytes selected with taint tracking, which must be sampled
randomly since taint does not distinguish degrees of influence
between between variables.

V. CONCLUSION

We introduce a new type of Dynamic Dataflow Analysis,
called Proximal Gradient Analysis, and show it outperforms
Taint Tracking as a predictor of which inputs effect branch
variables by up to 39% over 7 test programs with comparable
overhead, as well as . We are currently investigating appli-
cations of Gradient Analysis to vulnerability discovery and
information leak analysis.

REFERENCES

[1] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N
Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[2] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’04, pages 75–, Washington,
DC, USA, 2004. IEEE Computer Society.

[3] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis
for automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In NDSS, volume 5, pages 3–4. Citeseer, 2005.

[4] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and
Trends® in Optimization, 1(3):127–239, 2014.

[5] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In 2010 IEEE Symposium
on Security and Privacy, pages 317–331. IEEE, 2010.

