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Abstract. The paper will be presented at the IEEE SafeThings
2019 workshop collocated with the IEEE Symposium on
Security and Privacy.

Advances in Machine Learning (ML) and Deep Neural Net-
works (DNNs) bring tremendous potential to make autonomous
vehicles a reality. For this highly-critical application, safety is
the major concern, but unfortunately ML algorithms are not
traditionally designed and evaluated from this perspective.

In this poster, we demonstrate that classification and
regression models for self-driving car applications are
vulnerable to adversarial evasion attacks at testing time. We
consider the case study of steering angle predicting from camera
images, using the dataset from the 2014 Udacity challenge 2 [1].
First, we adapt the state-of-the-art Carlini and Wagner 2017
evasion attack [2] to the classification problem of predicting
steering direction. Second, we design the first testing-time
attack for regression based on Convolutional Neural Networks
(CNNs) and test it in the context of this application.

Problem statement and threat model. Modern cars are
outfitted with Electronic Control Units (ECUs) to control
specific functions on the car, such as controlling brakes [3].
In connected cars, some of these ECUs communicate outside
of the car, such as on-board diagnostics [3]. While this adds
functionality, it also opens them up to attack.

We consider the problem of predicting steering angles using
DNNs that process camera images. An attacker can potentially
control one or multiple ECUs, and can spoof messages from the
camera due to lack of authentication on the CAN bus [3]. The
attacker can modify the image sent by a camera, constructing
an adversarial example which will be misclassified by a steering
angle controller for the autonomous vehicle. This could result
in a different prediction generated by the ML model.

Data. The training data consists of 33,608 images extracted
from the videos provided by the Udacity self-driving car
challenge 2. We apply image preprocessing as done by previous
work [4], [5]. Each datapoint includes the steering angle at
the moment the image was captured. The steering angles in
the Udacity data set driving log were pre-scaled by a factor of
1/25. To assign classification labels, we split the scaled angle
values into three intervals to obtain the three directions (left,
straight, and right).
DNN architectures. We select two CNN models for both

the classification and regression problems. The first is the
Epoch model [4], while the second is inspired by Bojarski et
al. [6] (called NVIDIA model). We adapted both models for
classification by adding a last layer with 3 hidden units and
softmax activation function. The architecture for regression is
similar, excluding the last softmax layer. The NVIDIA model
is more complex (467 million parameters) compared to the
Epoch model (25 million parameters).

Evasion attacks against direction classification. We use the
L2 distance between the original and adversarial image to
measure the amount of perturbation introduced by the attack.
We leverage and adapt the state-of-art L2 attack by Carlini
and Wagner [2], proposed originally in the context of image
classification. The attack crafts adversarial examples by solving
the following optimization problem for an image x with original
class i to find the perturbation σ that transforms it into a targeted
class t 6= i:

minimize ||σ||2 + c× f(x+ σ)
such that x+ σ ∈ [0, 1]d

f(x+ σ) = (max(Z(x+ σ)j 6=t)− Z(x+ σ)t)
+

i - original class, t 6= i - adversarial target class.

Here s+ is the notation for max(s, 0),

Evasion attacks against steering angle regression
prediction. We are not aware of existing evasion attacks
against CNNs for regression. A regression model is typically
evaluated by the Mean Square Error (MSE) metric, defined
either for single points or over an entire dataset. MSE of a
single point x with response y ∈ R measures the squared
residual (e.g., difference between the true response y and
the predicted response ŷ = F (x)). For a dataset, MSE is
the average of the squared residuals of all points. Our main
insight is to adapt the classification attack by changing the
objective function to maximize the MSE difference between
the predicted response on the adversarial image F (x + σ)
and the true response y. This way, the attacker attempts to
change the prediction on the adversarial image further away
from the true value.

Thus, in order to find the adversarial image for original
image x with response y, the attacker solves the following
optimization task with respect to the parameter σ:

minimize ||σ||2 − c× g(x+ σ, y)
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Fig. 1: Results and adversarial images for the Epoch model.

(a) Success rate (b) ROC curves (c) Input image: straight (d) Adversarial image: right

Fig. 2: Results and adversarial images for the NVIDIA model.

such that x+ σ ∈ [0, 1]d

g(x+ σ, y) = (F (x+ σ)− y)2
Here c is a hyper-parameter that is found by binary

search; it controls the tradeoff between minimizing the image
perturbation versus maximizing the MSE value.

Training results. We train both models using 10-fold cross
validation. The accuracy for classification is high: 90% for the
Epoch model and 86% for the NVIDIA model.

Attack results for direction prediction. For testing the attack
we choose 300 images from all 3 classes, and select the 2 values
of the targeted class (different from original class), resulting
in 600 adversarial images. We found the optimal value for the
attack hyper-parameter c by running binary search for 9 steps
with the initial value of c equal to 0.001. As expected, if there
are no constraints on adversary’s ability to manipulate images,
the adversarial success rate reaches 100%.

The attacker success on the two models with respect to the
amount of perturbation is illustrated in Figures (1a) and (2a). In
the Epoch model, a minimum modification to the image (0.82
L2 norm) results in 100% attack success. However, the amount
of perturbation for NVIDIA is higher (121.01 L2 norm). We
conjecture the reason to be the additional complexity of the
NVIDIA model, resulting in a more robust architecture.

We next study the impact of the attack on the models’
performance. The micro-average ROC curves with and without
the attack are in Figures (1b) and (2b), respectively. False
positive rate for each class is the number of adversarial
images classified as this class. It could be easily seen that
the model performance decreases under attack (for instance,
AUC decreases from 1 in the no-attack scenario to 0.62 for
0.75 L2 norm perturbation for the Epoch model).

An example image from the right class and its resulting
adversarial image from the left class are shown in Figures (1c)
and (1d) for the Epoch model. Figures (2c) and (2d) show
an image from the straight class, turned into an adversarial
example from the right class for the NVIDIA model.
Attack results for steering angle prediction. For testing the
regression attack we choose 100 images. We found the optimal
value for the attack hyper-parameter c by binary search.

After performing the attack we observe that 90% of
adversarial images have perturbation value less than 0.57 L2

norm, which is very small. Additionally, our attack results
in significant changes to the MSE of adversarial images.
In particular, 10% of adversarial images have an MSE
value more than 20 times higher than the MSE value of
the corresponding legitimate image. The maximum ratio of
adversarial to legitimate MSE is 69.
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