
Poster: Exploring Adversarial Examples in Malware Detection

Octavian Suciu
University of Maryland, College Park

osuciu@umiacs.umd.edu

Scott E. Coull
FireEye, Inc.

scott.coull@fireeye.com

Jeffrey Johns
FireEye, Inc.

jeffrey.johns@fireeye.com

Abstract—The convolutional neural network (CNN) architec-
ture is increasingly being applied to new domains, such as
malware detection, where it is able to learn malicious behavior
from raw bytes extracted from executables. These architectures
reach impressive performance with no feature engineering effort
involved, but their robustness against active attackers is yet
to be understood. Such malware detectors could face a new
attack vector in the form of adversarial interference with the
classification model. Existing evasion attacks intended to cause
misclassification on test-time instances, which have been exten-
sively studied for image classifiers, are not applicable because
of the input semantics that prevents arbitrary changes to the
binaries. This paper explores the area of adversarial examples
for malware detection. By training an existing model on a
production-scale dataset, we show that some previous attacks
are less effective than initially reported, while simultaneously
highlighting architectural weaknesses that facilitate new attack
strategies for malware classification. Finally, we explore how
generalizable different attack strategies are, the trade-offs when
aiming to increase their effectiveness, and the transferability of
single-step attacks. This poster is associated with an accepted
paper from the Deep Learning and Security Workshop at S&P.

I. INTRODUCTION

The popularity of convolutional neural network (CNN)
classifiers has lead to their adoption in fields which have been
historically adversarial, such as malware detection. Recent
advances in adversarial machine learning have highlighted
weaknesses of classifiers when faced with adversarial samples.
One such class of attacks is evasion, which acts on test-
time instances. The instances, also called adversarial examples,
are modified by the attacker such that they are misclassified
by the victim classifier even though they still resemble their
original representation. State-of-the-art attacks focus mainly
on image classifiers, where attacks add small perturbations to
input pixels that lead to a large shift in the victim classifier
feature space, potentially shifting it across the classification
decision boundary.

In the context of malware detection, adversarial examples
could represent an additional attack vector for an attacker
determined to evade such a system. However, domain-specific
challenges limit the applicability of existing attacks designed
against image classifiers on this task. First, the strict semantics
of binary files disallows arbitrary perturbations in the input
space. This is because there is a structural interdependence
between adjacent bytes, and any change to a byte value could
potentially break the functionality of the executable. Second,
limited availability of representative datasets or robust public
models limits the generality of existing studies.

This paper sheds light on the generalization property of
adversarial examples against CNN-based malware detectors
by focusing on an existing classifier called MalConv [1].
The architecturea uses an embedding layer which is passed
through a gated convolutional layer, followed by a temporal
maxpooling layer, before a final fully connected layer.

By training on a production-scale dataset of 12.5 million
Portable Executable (PE) files, we are able to observe in-
teresting properties of adversarial attacks, showing that their
effectiveness could be misestimated when small datasets are
used for training, and that single-step attacks are more effective
against robust models trained on larger datasets.

II. DATASETS.

To evaluate the success of evasion attacks against the Mal-
Conv architecture we utilize three datasets. First, we collected
16.3M PE files from a variety of sources, including VirusTotal,
Reversing Labs, and proprietary FireEye data. The data was
used to create a production-quality dataset of 12.5M training
samples and 3.8M testing samples, which we refer to as the
Full dataset. Second, we utilize the EMBER dataset [2], which
is a publicly available dataset comprised of 1.1M PE files, out
of which 900K are used for training. On this dataset, we use
the pre-trained MalConv model released with the dataset. In
addition, we also created a smaller dataset whose size and
distribution is more in line with prior attacks proposed by
Kolosnjaji et al. [3], which we refer to as the Mini dataset.
The Mini dataset was created by sampling 4,000 goodware
and 4,598 malware samples from the Full dataset.

III. ATTACK STRATEGIES

We utilize two attack strategies throughout our study, each
with its own set of trade-offs.

a) Append Attacks: These attacks address the semantic
integrity constraints of PE files by appending adversarial noise
to the original file.

Benign Append: The attack takes bytes from the beginning
of benign instances and appends them to the end of a malicious
instance. The intuition behind this attack is that leading bytes
of a file, and especially the PE headers, are the most influential
towards the classification decision [1]. Therefore, it signals
whether the maliciousness of the target could be offset by
appending highly influential benign bytes.

FGM Append: We propose the “one-shot” FGM Append
attack, an adaptation of the Fast Gradient Method (FGM)
originally described in [4]. Our attack appends random bytes

Bytes Benign Append FGM Append
Mini EMBER Full Mini EMBER Full

500 4% 0% 0% 1% 13% 13%
2,000 5% 1% 0% 2% 18% 30%
5,000 6% 2% 1% 2% 26% 52%

10,000 9% 2% 1% 1% 33% 71%

TABLE I: Success Rate of the Append attacks for increased
number of added bytes.

to the original sample and updates them using a policy dictated
by FGM.

b) Slack Attacks: Besides the inability to append bytes to
files that already exceed the model’s maximum size, they also
need to offset a large fraction of the original discriminative
features. We therefore propose an attack strategy that exploits
the existing bytes of binaries with no side effects on the
functionality of the program.

Slack FGM: Our strategy defines a set of slack bytes where
an attack algorithm is allowed to freely modify bytes in
the existing binary without breaking the PE. This strategy
extracts the gaps between neighboring PE sections of an
executable. The gaps are inserted by the compiler and exist
due to misalignments between the virtual addresses and the
multipliers over the block sizes on disk. Once identified, the
slack bytes are then modified using the FGM approach.

IV. RESULTS

We randomly pick 400 candidate instances from the test
set that are correctly classified as malware by the victim and
measure the effectiveness of the attacks using the Success Rate
(SR): the percentage of adversarial samples that successfully
evaded detection.

a) Append Attacks: As shown in Table I, the SR of
the Benign Append attack seems to progressively increase
with the number of added bytes on the Mini dataset, but
fails to show the same behavior on the EMBER and Full
datasets. Conversely, in the FGM Append attack we observe
that the attack fails on the Mini dataset, while reaching up
to 33% SR on EMBER and 71% SR on the Full datasets.
This paradoxical behavior highlights the importance of large,
robust datasets in evaluating adversarial attacks. One reason
for the discrepancy in attack behaviors is that the MalConv
model trained using the Mini dataset (modeled after the
dataset used by Kolosnjaji et al.) has a severe overfitting
problem and the single gradient evaluation does not provide
enough information for the sequence of byte changes made in
the attack.Aside from the methodological issues surrounding
dataset size and composition, our results also show that even
a robustly trained MalConv classifier is vulnerable to append
attacks when given a sufficiently large degree of freedom.

b) Slack Attacks: In Figure 1 we evaluate the Slack FGM
attack by varying the percentage of available slack bytes that
are modified. This is achieved by modifying the ε parameter
of FGM, which in turn affects the magnitude of the changes
performed on the bytes. The upper bound for the SR is 15%
on EMBER for an attack where 14% (291/2103) slack bytes
were modified on average, while on Full we achieve 28% SR
for 58% (1117/1930). While the attack is more successful

0 10 20 30 40 50 60 70
Percentage of slack bytes that are modified (%)

0

5

10

15

20

25

30

Su
cc

es
s R

at
e

(%
)

EMBER model
Full model

Fig. 1: Slack FGM attack SR for increasing leverage.

against Full than EMBER, it also succeeds in modifying a
proportionally larger number of bytes.

Compared to FGM Append which could achieve a higher
SR, Slack FGM requires a much smaller number of byte
modifications. The results confirm our initial intuition that the
coarse nature of MalConv’s features requires consideration of
the surrounding contextual bytes within the convolutional win-
dow. In the slack attack, we make use of existing contextual
bytes to amplify the power of our FGM attack without having
to generate a full convolutional window using appended bytes.

c) Attack Transferability: We further analyze the trans-
ferability of attack samples generated for one (source) model
against another (target). We run two experiments with EM-
BER and Full alternately acting as source and target, and
evaluate FGM Append and Slack FGM attacks on samples
that successfully evade the source model and for which the
original (pre-attack) sample is correctly classified by the target
model. At most 2/400 samples evade the target model for each
set of experiments, indicating that these single-step samples
are not transferable between models. The findings are not
in line with prior observations on adversarial examples for
image classification, where single-step samples were found to
successfully transfer across models [5].

V. CONCLUSION

In this paper, we explored the space of adversarial examples
against deep learning-based malware detectors. Our experi-
ments indicate that the effectiveness of adversarial attacks on
models trained using small datasets does not always generalize
to robust models. The attacks we propose highlight the threat
of adversarial examples as an alternative to evasion techniques
such as runtime packing.

REFERENCES

[1] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv preprint
arXiv:1710.09435, 2017.

[2] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models,” ArXiv e-prints, Apr. 2018.

[3] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eck-
ert, and F. Roli, “Adversarial malware binaries: Evading deep learning
for malware detection in executables,” 26th European Signal Processing
Conference (EUSIPCO ’18), 2018.

[4] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[5] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” arXiv preprint arXiv:1611.01236, 2016.

