
Poster: How to Homomorphically Compute on Data
Encrypted under Different Keys?

Asma Aloufi∗§, Peizhao Hu∗
∗Rochester Institute of Technology, NY, USA

§Taif University, Taif, Saudi Arabia

Abstract—Homomorphic encryption (HE) supports computa-
tions on encrypted data without decryption. This capability can
enable secure computation outsourced to a semi-honest cloud
without giving up the privacy of user data. One of the demanding
applications in cloud computing is secure collaborative computing
in which data is contributed by multiple participants and is
encrypted using different keys. Current solutions for homomor-
phic computation on ciphertexts encrypted under multiple keys
are inefficient. More specifically, existing works either require
key setup before any computation or incur large ciphertext
size (at best, grow linearly to the number of involved keys).
In this paper, we give an overview of our new approach that
leverages the advantages of threshold and multi-key HE to
support computations on ciphertexts under different keys while
achieving lower complexity. In our collaborative setting, we
reduce the ciphertext size from (N + 1) in the state-of-the-art
approaches to 2.

I. INTRODUCTION

Homomorphic encryption (HE) is a promising crypto-
graphic technique that protects data in-transmission, at-rest,
and in-use without decryption. These capabilities are important
for enabling secure computation on private data in the cloud.

Typically in well-known HE schemes, such as BGV [2],
homomorphic computation are performed on data that is
encrypted under a single key pair. This leads to a weaker
security model because all participants have to share the same
key pair; that is, they can see each other’s private data. Many
cloud computing applications require stronger security, such
that private data from different individuals is encrypted under
different key pairs. This security model allows a group of users
to contribute their encrypted data to a cloud evaluator for joint
computations without giving away their privacy. We refer to
such setting as secure collaborative computing.

Collaborative Machine Learning (ML) is an increasingly im-
portant application of secure collaborative computing because
of the growing interest in ML as a Service (MLaaS) in the
cloud. A set of parties cooperate in training predictive models
on their private datasets and perform secure classification for
the given client inputs, as illustrated in Fig. 1. Joint datasets
and models are more diverse and often contain features that
help to achieve better accuracy. Operating on encrypted data
helps to prevent incidents such as the Equifax data leak [3].

Computing on ciphertexts that are encrypted under different
key pairs can be tricky and inefficient. In threshold HE

This poster is associated with an SPW paper [1] accepted in the Interna-
tional Workshop on Privacy Engineering (IWPE’19).

Cloud

feature
vector

offload encrypted
models

return encrypted
result

send
encrypted input

Model Owners

Client 2

3

1
Ci (pkCi, skCi)

M1

model

(pkM1, skM1)
M2

model

(pkM2 , skM2)

Secure
collaborative
classification

...

MN

model

(pkMN , skMN)

Fig. 1: Secure collaborative machine learning

scheme [4], participants generate a joint key, based on the
additive homomorphic property of their individual keys, to
encrypt their inputs and compute under this joint key. At the
end of the evaluation, the users must cooperate to decrypt
the result using a multi-party computation (MPC) protocol.
Suppose we have N model owners and P clients, as illustrated
in Fig. 1. Before any computation, every client needs to
generate a joint key with the group of N model owners in
a setup phase; that is, we will need to produce and maintain
P joint keys. This also means that each model owner has to
provide P copies of the encrypted model to the cloud, one for
each distinct joint key.

As an alternative, multi-key HE (MKHE) supports homo-
morphic computation on ciphertexts encrypted under different
keys without a joint key setup. This way, the model owners
delegate one encryption copy of their models to the cloud.
Ciphertexts can be extended “on-the-fly” to a concatenation
of participants’ keys at evaluation. The size, more specifically
dimension, of an extended ciphertext increases with respect to
the number of involved keys. The most efficient construction
of MKHE [5] is based on the BGV scheme [2], where
the ciphertext size increases linearly. For our collaborative
machine learning scenario, an MKHE solution will require
each ciphertext to be extended to N+1 different keys (i.e., the
model owners keys plus the key of the requesting client) before
any computation. The efficiency of the system is affected
especially if the number of model owners is large because
it proportionally increases the ciphertext size.

In this paper, we propose a new approach based on the
BGV scheme that supports homomorphic computation over
ciphertexts encrypted under multi-keys and produces small

(pkC, skC)
{ek’C}

...

Model Owners

(pkM2,skM2)
 {ek’M2}

(pkM1,skM1)
 {ek’M1}

(pkMN,skMN)
 {ek’MN}

pkM = pkM1+pkM2+...+pkMN
ek’M = ek’M1+ek’M2+...+ek’MN

feature
vector

Client

M1

model

M2

model

MN

model

(pkC, skC)
{ek’C}

...

Model Owners

(pkM2,skM2)
 {ek’M2}

(pkM1,skM1)
 {ek’M1}

(pkMN,skMN)
 {ek’MN}

feature
vector

Client

M1

model

M2

model

MN

model

pkM= pkMi
ek’M= ek’Mi∑

∑

(pkC, skC)

...

Model Owners

(pkM2,skM2)

(pkM1,skM1)

(pkMN,skMN)

feature
vector

Client

M1

model

M2

model

MN

model

pkM= pkMi∑

(a) Key Setup

Cloud

feature
vector

offload encrypted
models under pkM

return encrypted
result

send encrypted
inputs under pkC

Model Owners

Client
2

3

1

M1

model

M2

model ...

MN

model

Phase 2: Encryption & Evaluation

Secure
collaborative
classification
with MKHE

(where #keys = 2)

Cloud

feature
vector

offload encrypted
models under pkM

send encrypted
inputs under pkC

Model Owners

Client 2

1

M1

model

M2

model ...

MN

model

Secure
collaborative
classification
with MKHE

(where #keys = 2)

3

(b) Encryption and Evaluation

return element
cM,1sMi

Cloud

decrypt
result return encrypted

result under pkC

Model Owners

Client

3

M1

model

skM1

M2

model

 skM2

invoke partial
decryption on

encrypted result

...

MN

model

skMN

send ciphertext
element cM,1

2

1

(c) Decryption Protocol

Fig. 2: Illustration of the four main phases for secure collaborative evaluation protocol with multi-key support.

ciphertexts. There is no need to set up a joint key for each
client with the model owners, and ciphertexts are extended
only under two different keys instead of N + 1 keys resulting
in a reduction in the ciphertext size.

II. EFFICIENT SECURE COMPUTATION WITH MULTI-KEY

Our new approach leverages both the threshold and multi-
key HE techniques. It consists of four different phases: key
setup, encryption, evaluation, and decryption. Figure 2 gives
an illustration and overview of these four phases.

a) Key setup: In this phase, we generate a key pair
(pkMi

, skMi
) for each model owner, and a key pair (pkCi

, skCi
)

for each client. Assuming the N model owners do not change
frequently, we set up a joint key pkM once before the start of
the protocol as shown in Fig. 2a. The joint key is generated,
in a threshold manner, as the sum of the model owners’
individual keys pkM =

∑N
i=1 = pkMi

. It is used to encrypt
the models before sending them to the cloud. Note that the
encrypted model cannot be decrypted unless all the model
owners collaborated since the corresponding secret key skM
is shared among them. The joint key can be revoked or
updated, but this requires rerunning the threshold key setup
and encrypting the models with the new joint key.

b) Encryption: Each model owner Mi encrypts each of
their models under the joint key pkM as BGV ciphertexts,
such that each ciphertext is in the form cM = (cM,0, cM,1).
Then, they send the encrypted models to the cloud as shown
in step 1 in Fig. 2b. Similarly, the client C encrypts his inputs
under the public key pkC as cC = (cC,0, cC,1) and sends the
encryptions to the cloud for evaluation (step 2 in Fig. 2b).

c) Evaluation: When the client C requests an evaluation,
the cloud first extends each ciphertext (i.e., encrypted models
and client’s inputs) under the set of the two keys p̄k =
{pkM, pkC}. The extended ciphertext is a concatenated 2 sub-
vectors c̄ = (c′M, c′C). For model’s ciphertext, c′M = cM and
c′C = 0. On the other hand, for client’s ciphertext, c′M = 0 and
c′C = cC . Then, the cloud performs homomorphic evaluation
on extended ciphertexts and outputs a result that is encrypted
under the extended key p̄k.

d) Decryption: To decrypt the extended ciphertext result
c̄ = (cM, cC), we need the corresponding extended secret key

s̄k = {skM, skC} to obtain 〈c̄, s̄k〉 = 〈cM, skM〉 + 〈cC , skC〉.
Note that the secret key skM = (1, sM) is secretly shared
among N model owners. The client will not be able to
decrypt the result without model owners’ secret shares of the
key. Hence, the cloud invokes an MPC decryption protocol
(Fig. 2c), where each model owner computes the decryption
component ρi = cM,1sMi . Then, the cloud returns the
encrypted result and the aggregated component

∑N
i=1 ρi =

cM,1

∑N
i=1 sMi

to the client, who use the latter to decrypt.
Our proposed approach is secure against a semi-honest

cloud. The cloud evaluates on encrypted models and client
inputs, which are protected under the semantic security of the
underlying HE scheme. The decryption protocol follows the
dishonest-majority assumption where all users are required to
participate in decryption to retrieve the final result.

III. CONCLUSION

We proposed a new approach that combines the threshold
and multi-key HE to support collaborative computation on
ciphertexts encrypted under different keys. In the collaborative
machine learning setting, our proposed approach (i) removes
the need of key setup between a client and each of the set
of model owners, (ii) reduces the number of encryption of
the same model, and (iii) reduces the ciphertext size with
dimension reduction from (N + 1) to 2.

REFERENCES

[1] Asma Aloufi and Peizhao Hu. Collaborative homomorphic computation
on data encrypted under multiple keys. International Workshop on Privacy
Engineering (IWPE), co-located with IEEE S&P’19.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Innovations in
Theoretical Computer Science Conference (ITCS), pages 309–325. ACM,
2012.

[3] Sara Ashley O’Brien. Equifax data breach: 143 million people could be
affected. https://money.cnn.com/2017/09/07/technology/business/equifax-
data-breach, Sep 2017.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
Advances in Cryptology – EUROCRYPT, pages 483–501. Springer, 2012.

[5] Long Chen, Zhenfeng Zhang, and Xueqing Wang. Batched multi-hop
multi-key fhe from ring-lwe with compact ciphertext extension. In Theory
of Cryptography Conference, pages 597–627. Springer, 2017.

