CaSym: Cache Aware Symbolic Execution for Side Channel Detection and Mitigation

Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, Mahmut Kandemir

Pennsylvania State University

Cache Side Channels

- Side Channel
 - Unintentional information transfer

Cache Side Channels

- Side Channel
 - Unintentional information transfer

How Severe is the Problem?

- High band width attack
- Work on secure enclaves
- Can be launched across VM's in the cloud

Finding vulnerabilities in code is challenging!

Security

Intel shrugs off 'new' side-channel

attacks on branch prediction units and

SGX Researchers show how side-channel attacks can be used to steal encryption keys on A Spectre and Meltdown: Powerful Reminders of Side Channel Attacks

Robert Brotzman – Pennsylvania State University

Prior Work

- CacheAudit (Doychev et al. Security '13)
 - Uses abstract interpretation
 - Computes upper bound on leakage
 - Does not provide location of leakage
- CacheD (Wang et al. Security '17)
 - Uses symbolic execution
 - Can detect where leakage happens
 - May miss side channels (not sound)
 - Requires concrete inputs
 - Does not provide fixes

Introducing CaSym

- Uses <u>cache-aware</u> symbolic execution
- <u>Soundly</u> models cache side channels
 - Memory accesses
 - Branches
- Detects cause of side channel
 - Provides simple <u>fix</u> mechanisms
- <u>Flexible</u> cache models
 - Infinite
 - Age
 - LRU

CaSym: Overview

Example: Square & Multiply

Symbolic Execution

- Program variables
 - Treats all program variables symbolically
- Cache variables
 - Creates cache variable for each program variable
 - Cache variables values are determined by cache model

Verification

- Run program twice
- Cache and public variables are same between runs
- Sensitive variables must be different
- Vulnerability reported when two different cache states are achieved

Cache Models

Motivation

- Cache implementations are complex
 - Replacement policies, hierarchies, inclusivity, etc.
- Vary amongst processors

Infinite Model Demo

Age Model Demo

Improving Performance

- Array reads are <u>unconstrained</u>
 - Uses taint analysis to check if read is sensitive
- <u>Reset</u> constraints
 - Breaks program into smaller chunks
 - Recomputes sensitive variables
 - Useful for loops
- Loop transformation
 - Soundly rewrite program to be loop free
 - Makes loop unrolling unnecessary

Attack Models

PennState

Attack Models

PennState

Crypto Results: Trace

PennState

	Inf	nfinite Age		ge	LRU (2k)				
Benchmarks	Found	Time	Found	Time	Found	Time			
AES libgcrypt	64	8.9	64	16.7	64	635			
AES mbed TLS	17			17.0	17				
3DES libgcrypt	C	Order of acc	esses is	189	C	Can take			
3DES mbed TLS		still differ	rent	73.2	significantly more				
DES glibc	2		2	2.65		time			
UFC glibc	0			-					
Square & Multiply libgcrypt	Finds one additi vulnerable locat Most realistic model								
Square & Always Multiply libgcrypt	3					63			
Left-to-Right Modular Exp libgcrypt	3	84.8	3	2615	3	275			
Totals	269	217.36	270	3226.82	269	8881.85			

Robert Brotzman – Pennsylvania State University

Protected Results

Т

	Da	ta cached at begin	inction		Data cached throughout function					
	Preloading				Pinning					
		Infinite	Age		Infinite			Age		
Functions	TP	Time (s)	ТР	Time (s)	TP	Time (s)	TP	Time (s)		
AES libgcrypt	0	2.95	64	17.4	0	4.02	0	13.6		
AES mbed TLS	0	1.68	17	17.4	0	2.00	0	9.60		
3DES libgcrypt	0	84.0	128	170	0	0.61	0	1.53		
3DES mbed TLS	0	1.53	48	65.5	0	0.03	0	1.70		
DES glibc	0	0.56	2	3.15	0	0.51	0	1.79		
Totals	0	90.72	259	273.45	0	7.17	0	28.22		

Robert Brotzman – Pennsylvania State University

- Built CaSym to <u>automatically</u> identify vulnerabilities in programs
- CaSym supports a <u>variety</u> of cache models
 - Easy to get different precision and efficiency
- Tested on an <u>assortment</u> of benchmarks
 - Confirm many existing <u>vulnerabilities</u> in crypto benchmarks
 - Verified <u>mitigations</u> strategies on crypto benchmarks
 - Found over <u>20 new</u> potential vulnerabilities in the PostgreSQL database

