
Spectre Attacks:
Exploiting Speculative Execution

Paul Kocher1, Jann Horn2, Anders Fogh3, Daniel Genkin4, Daniel Gruss5,
Werner Haas6, Mike Hamburg7, Mortiz Lipp5, Stefan Mangard5,
Thomas Prescher6, Michael Schwartz5, Yuval Yarom8

1 Independent, 2 Google Project Zero, 3 G DATA Advanced Analytics, 4 University of Pennsylvania and University of
Maryland,
5 Graz University of Technology, 6 Cyberus Technology, 7 Rambus, Cryptography Research Division, 8 University of
Adelaide & Data61

All	trademarks	are	the	property	of	their	respective	owners.	This	presentation	is	provided	without	any	guarantee	or	warranty	whatsoever.	

IEEE	Security	&	Privacy		(May	20,	2019)	

2	

No	more	easy	gains	from	low-level	physics,	e.g.:	
ê  Increase	clock	rates 	Mostly	maxed	out	(3.8	GHz	Pentium	4	in	2004)	
ê  Improve	memory	speeds 	DRAM	latency	huge,	not	improving	much	

	

Industry	focus	on	pipelining	+	boosting	average-case	performance,	e.g.:	
ê  Reducing	memory	delays	 	à	Caches	
ê  Working	during	delays	 	à	Speculative	execution	

How to boost CPU performance?

Public	domain	image	of	Pentium	4	die	by	Ritzchens	Fritz	

Computer architecture: n. The art and science of
introducing new side channel vulnerabilities.

3	

Programs	are	expressed	sequentially	
…	but	fast	CPUs	leverage	HW’s	parallelism	(pipelining…)	and	speculation	
	

Speculation:	Start	likely	tasks	early,	then	clean	up	errors.			

Speculative execution

if (x == 1) {
 abc…

} else {
 xyz…

}

	 If	x	is	uncached,	processor	faces	a	long	delay	
	 CPU	can	guess	execution	path	&	proceed	speculatively	
	 When	x	arrives	from	DRAM,	check	if	guess	was	correct	
ê  Correct:	commit	speculative	work	=	performance	gain	
ê Wrong	guess:	Discard	faulty	work	

Example:	

4	

Correct	program	

Fault attacks

A	
B	
C	
D	
E	
…	

Induce	error(s)	

A	
B	
C’	
D	
E	
…	

Secure	programs	are		
unsafe	if	executed		
erroneously	
	
Example:	Induce	analog		
glitches	on	clock,	reset,		
power/ground…	
	
Almost	any	kind	of	error	is	exploitable	

ß	Executed		
						program		
						is	different	

5	

Are	there	any	security	implications	from	
speculative	execution?	 --	Mike	Hamburg	

CPU	is	secretly	making	errors	on	its	own	
		

≈  fault	attack	hardware	is	built-in	
	

Faulty	results	are	discarded,	but	CPUs	are	riddled	with	side/covert	channels	
(…	much	simpler	than	combined	fault+differential	power	analysis)	

6	

Conditional branch (Variant 1) attack

	 Attack	scenario:	
ê  Code	runs	in	a	trusted	context	
ê  Adversary	wants	to	read	memory	and	controls	unsigned	
integer	x	

ê  Branch	predictor	will	expect	if()	to	be	true	
(e.g.	because	prior	calls	had	x	<	array1_size)	

ê  array1_size	and	array2[]	are	not	in	cache	

if (x < array1_size)
 y = array2[array1[x]*512];

Contents	don’t	matter	

Memory	&	Cache	Status	

array1_size = 00000008
	

Memory	at	array1	base	address:
	8	bytes	of	data	(value	doesn’t	matter)
 […	lots	of	memory	up	to	array1	base+N…]		
 09 F1 98 CC 90...(something	secret)	

	
array2[0*512]
array2[1*512]
array2[2*512]
array2[3*512]
array2[4*512]
array2[5*512]
array2[6*512]
array2[7*512]
array2[8*512]
array2[9*512]
array2[10*512]
array2[11*512]

Uncached	 Cached	

�	�	�	

only	care	about	cache	status	

7	

Conditional branch (Variant 1) attack

Attacker	calls	victim	code	with	x=N	(where	N	>	8)	
ê  Speculative	exec	while	waiting	for	array1_size	

ê  Predict	that	if()	is	true	
ê  Read	address	(array1	base	+	x)		w/	out-of-bounds	x		
ê  Read	returns	secret	byte	=	09		(fast	–	in	cache)	

if (x < array1_size)
 y = array2[array1[x]*512];

Memory	&	Cache	Status	

array1_size = 00000008
	

Memory	at	array1	base	address:
	8	bytes	of	data	(value	doesn’t	matter)
 […	lots	of	memory	up	to	array1	base+N…]		
 09 F1 98 CC 90...(something	secret)	

	
array2[0*512]
array2[1*512]
array2[2*512]
array2[3*512]
array2[4*512]
array2[5*512]
array2[6*512]
array2[7*512]
array2[8*512]
array2[9*512]
array2[10*512]
array2[11*512]

Uncached	 Cached	

�	�	�	

Contents	don’t	matter	
only	care	about	cache	status	

8	

Conditional branch (Variant 1) attack

Attacker	calls	victim	code	with	x=N	(where	N	>	8)	
ê  Speculative	exec	while	waiting	for	array1_size	

ê  Predict	that	if()	is	true	
ê  Read	address	(array1	base	+	x)		w/	out-of-bounds	x		
ê  Read	returns	secret	byte	=	09		(fast	–	in	cache)	
ê  Request	memory	at	(array2	base	+	09*512)	
ê  Brings	array2[09*512]	into	the	cache	
ê  Realize	if()	is	false:	discard	speculative	work	

ê  Finish	operation	&	return	to	caller	

Attacker	times	reads	from	array2[i*512]	
ê  Read	for	i=09	is	fast	(cached),	revealing	secret	byte	

if (x < array1_size)
 y = array2[array1[x]*512];

Memory	&	Cache	Status	

array1_size = 00000008
	

Memory	at	array1	base	address:
	8	bytes	of	data	(value	doesn’t	matter)
 […	lots	of	memory	up	to	array1	base+N…]		
 09 F1 98 CC 90...(something	secret)	

	
array2[0*512]
array2[1*512]
array2[2*512]
array2[3*512]
array2[4*512]
array2[5*512]
array2[6*512]
array2[7*512]
array2[8*512]
array2[9*512]
array2[10*512]
array2[11*512]

Uncached	 Cached	

�	�	�	

Contents	don’t	matter	
only	care	about	cache	status	

9	

Spectre is a messy class of vulnerabilities

Many	related	results	
•  Speculative	Store	Bypass/Variant	4	
•  NetSpectre	
•  Foreshadow	
•  Spectre1.1	
•  Spectre-NG	
•  Rogue	System	Register	Read	
•  Speculative	Store	Bypass	(SSB)	
•  LazyFP	(Lazy	FPU	state	leak)	
•  ret2spec	
•  SpectreRSB	
	

+	more	to	come	

Speculation	scenario	
(=	computation	error)	

“Safe”	computation	that	
speculation	turns	unsafe	 Side	channel	

Detect	&	analyze	
leaked	data	

+	

Many	possible	variations	

Induce	computation	
with	desired	error	

+	

10	

Is Spectre a bug?

	 Everything	complies	with	the	architecture	specs	
ê  Branch	predictor	is	learning	from	history,	as	expected	

ê  Speculative	execution	unwinds	architectural	state	correctly	
ê  Reads	are	fetching	data	the	victim	is	allowed	to	read	

ê  Caches	are	allowed	to	hold	state	
ê  Covert	channels	&	side	channels	are	well	known	

?!	

11	

Spectre is a symptom

	 Symptom	of	excessive	architectural	ambiguity	
ê  Typical	architectures’	guarantees	are	insufficient	for	security	

E.g.	no	promise	to	keep	anything	secret	from	other	processes?		Across	intra-process	domains?	

ê  Consequence:	software	developers	to	rely	on	guesses	
Hopeless	for	developer:	even	if	tested	on	all	chips	today,	future	chips	may	be	different	

ê  Key	research	topic:	What	should	architectures	guarantee?	
	Minimum	requirement:	Sufficient	for	secure	software	

	Metric:	likelihood	final	system	(HW+SW)	will	be	secure	
						…	given	realistic	assumptions	about	SW+HW	development	practices	

	Challenges:	performance,	power,	legacy	compatibility,	die	area…	

Step 1: Tell programmers to add
LFENCE instructions wherever
something could go wrong (and
nowhere else because LFENCE is
really slow)
 …

Step n: Blame programmer

12	

Spectre is a symptom

	 History	of	prioritizing	performance,	legacy	compatibility,	…	over	security	
ê  Scaling	issue:		As	complexity	grows,	security	risks	increase	faster	than	benefits	

ê  Balance	has	shifted	for	many	applications:	value	of	performance	gains	<<	insecurity	costs	

ê  Latency	in	changing	mindsets:	Dominant	people	and	businesses	grew	up	when	performance	>	security	

Need	to	specialize	designs	for	performance	vs.	security	
ê  Can	co-exist	on	the	same	chip			
(analogous	to	ARM’s	big.LITTLE	for	power)	

ê  Security	=	much	less	complex	TCB	(HW+SW),	
not	just	a	different	mode	(like	TrustZone/SGX)	

Race	car	image	public	domain	by	RK47	(https://commons.wikimedia.org/wiki/File:Formula_RUS_2007-1-112.jpg),	Volvo	image	public	domain	by	IFCAR		(https://commons.wikimedia.org/wiki/File:Volvo-850-wagon-front.jpg)	

vs	

13	

Q&A	

If	the	surgery	proves	unnecessary,	we’ll		
revert	your	architectural	state	at	no	charge.	

