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Outsourced	Databases	



Database	

Encrypting	Outsourced	Databases?	

Encryption	prevents	querying!		



Encrypted
Database	

Encrypted	Databases	

Efficient	ones	leak	access	patterns:	
set	of	matching	records	for	query		

What	can	an	attacker	learn	
from	access	pattern	leakage?	



Encrypted
Database	

Database	Reconstruction	(DR)	

With	enough	queries,	can	learn	data	
from	access	patterns!	[KKNO],	[LMP],	[KPT]	

Prior	work:		
					huge	numbers	of	queries,		
					strong	assumptions,		
					specific	query	types.	

[KKNO]:	1026	for	salaries	
[LMP]:	dense	database	
[KPT]:	kNN	queries	only	



Our	Contributions	

•  Enabling	insight:	access	pattern	leakage	is	a	binary	classification	
Use	statistical	learning	theory	(SLT)	to	build	and	analyze	attacks	

•  New	DR	attacks	on	range	queries	
Generalize	and	improve	[KKNO],	[LMP]	with	SLT	+	PQ	trees	
On	real	data:	with	only	50	queries,	predict	salaries	to	2%	error		

•  Generic	reduction	from	DR	with	known	queries	to	PAC	learning	
•  Give	“minimal”	attack	for	all	query	types	via	ε-nets	

Instantiate	with	first	DR	attack	for	prefix	queries	
•  First	general	lower	bound	on	#queries	needed	for	DR	

Full	version:	https://eprint.iacr.org/2019/011	
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N:	number	of	possible	values,	wlog	[1,	…,		N]	
E.g.,	N=125	for	age	data	

Range	query:	is	a	pair	[a,	b]	where	1	≤	a	≤	b	≤	N.	
Database:	is	composed	of	records,	each	with	values	in	[1,	…,		N]	

Notation	and	Terminology	

12	 8	 14	 9	
1	 2	 3	 4	

[7,	10]	

8	 9	
2	 4	

Full	database	reconstruction	(DR):	recovering	exact	record	values	
Approximate	DR:	recovering	all	record	values	within	εN.	

	ε	=	0.05	is	recovery	within	5%.	ε	=	1/N	is	full	DR.	
Scale-free:	query	complexity	independent	of	#records	or	N.	

Access	Pattern:	which	records	match	



[KKNO16]:	full	DR	in	O(N	4	log	N)	queries	
Three	attacks:	
‣ 	GeneralizedKKNO:	O(ε-4	log	ε-1)	for	approx.	DR	
‣ 	ApproxValue:	O(ε-2	log	ε-1)	approx.	DR*	
‣ 	ApproxOrder:	O(ε-1	log	ε-1)	for	approx.	order	rec*	

O(N4	log	N)	

O(N2	log	N)	

O(N		log	N)	

Ω(ε-4)	

Ω(ε-2)	

Ω(ε-1	log	ε-1)	

[LMP18]:	Full	DR	for	dense	
	 					DB	in	O(N	log	N).	

Generalizes	

Implies	

*Requires	a	mild	hypothesis	about	data	
Bypass	[LMP]	lower	bound	via		
relaxing	to	“sacrificial”	recon.	

DR	For	Range	Queries:	Our	Work	

Lower	Bound	Full	DR	

With	DB	distribution	info,	get	approx.	DR	



1	 N	
Less	probable	 More	probable	

Assume	uniform	distribution	on	range	queries	+	static	database.	
Induces	a	distribution	f	on	the	probability	that	a	value	is	accessed.	

GeneralizedKKNO	
f



1	 N	

GeneralizedKKNO	
f

Idea:	for	each	record…	
		1.	Count	#accesses	to	estimate	f(value)	
		2.	Find	value	by	“inverting”	f	estimate	

Estimate	

How	many	queries	to	
get	estimate	sufficient	
for	ε	approx.	DR?	

More	work	needed	to	break	
symmetry.	See	paper	for	details	

Two	values!	



X

C

Sample	complexity:	
to	measure	Pr(C)	within	ε,	
you	need	O(1/ε2)	samples.	

Estimating	a	Probability	

Set	X	with	probability	distribution	D.	
Let	C	⊆	X	be	a	set.	



X

The set of samples drawn from X 
is an ε-sample iff for all C in 𝓒:

Estimating	a	Set	of	Probabilities	

Now:	set	of	sets	𝓒.	
Goal:	estimate	all	sets’	probabilities	simultaneously.	



V	&	C	1971:	
If	𝓒	has	VC	dimension	d,	then	
the	number	of	points	to	get	
an	ε-sample	whp	is	

Does	not	depend	on	|𝓒|!	

The	ε-sample	Theorem	

How	many	points	do	we	need	to		
draw	to	get	an	ε-sample	w.h.p.?	

X



1	 N	

GeneralizedKKNO	
f

Idea:	for	each	record…	
		1.	Count	#accesses	to	estimate	f(value)	
		2.	Find	value	by	“inverting”	f	estimate	

Estimate	

This	is	an	ε-sample!	
X	=	range	queries			𝓒	={{range	queries	∋	x}:	x	∈	[1,N]}		VC	dim.	=	2	

We	need	O(ε-4	log	ε-1)	queries	(inverting	f	adds	a	square)	

Can	we	get	rid	of	squaring?	



Idea:	for	each	record…	
		1.	Count	#accesses	to	estimate	f(value)	
		2.	Find	value	by	“inverting”	f	estimate	

This	is	an	ε-sample!	
X	=	range	queries			𝓒	={{range	queries	∋	x}:	x	∈	[1,N]}		VC	dim.	=	2	

We	need	O(ε-4	log	ε-1)	queries	(inverting	f	adds	a	square)	

Assume	there	exists	
at	least	one	record	in	
[N/8,	3N/8].	

1	 N	

GeneralizedKKNO	
f

Estimate	



Idea:	for	each	record…	
		1.	Count	#accesses	to	estimate	f(value)	
		2.	Find	value	by	“inverting”	f	estimate	

This	is	an	ε-sample!	
X	=	range	queries			𝓒	={{range	queries	∋	x}:	x	∈	[1,N]}		VC	dim.	=	2	

We	need	O(ε-2	log	ε-1)	queries!	More	complex	attack	–	see	paper	

Assume	there	exists	
at	least	one	record	in	
[N/8,	3N/8].	

1	 N	

ApproxValue	
f

Estimate	



Three	attacks:	
‣ 	GeneralizedKKNO:	O(ε-4	log	ε-1)	for	approx.	DR	
‣ 	ApproxValue:	O(ε-2	log	ε-1)	approx.	DR*	
‣ 	ApproxOrder:	O(ε-1	log	ε-1)	for	approx.	order	rec*	

O(N4	log	N)	

O(N2	log	N)	

O(N		log	N)	

Ω(ε-4)	

Ω(ε-2)	

Ω(ε-1	log	ε-1)	

DR	For	Range	Queries:	Our	Work	

Lower	Bound	Full	DR	

With	DB	distribution	info,	get	approx.	DR	

Require	iid	uniform	queries,	adversary	
knows	query	distribution.	What	can	we	
do	without	making	these	assumptions?	



Three	attacks:	
‣ 	GeneralizedKKNO:	O(ε-4	log	ε-1)	for	approx.	DR	
‣ 	ApproxValue:	O(ε-2	log	ε-1)	approx.	DR*	
‣ 	ApproxOrder:	O(ε-1	log	ε-1)	for	approx.	order	rec*	

O(N4	log	N)	

O(N2	log	N)	

O(N		log	N)	

Ω(ε-4)	

Ω(ε-2)	

Ω(ε-1	log	ε-1)	

DR	For	Range	Queries:	Our	Work	

Lower	Bound	Full	DR	

With	DB	distribution	info,	get	approx.	DR	

Reveal	order	without	no	assumptions	on	
query	distribution.	See	paper	for	details	



Conclusion	

•  Enabling	insight:	access	pattern	leakage	is	a	binary	classification	
Use	statistical	learning	theory	(SLT)	to	build	and	analyze	attacks	

•  New	DR	attacks	on	range	queries	
Generalize	and	improve	[KKNO],	[LMP]	with	SLT	+	PQ	trees	
On	real	data:	with	only	50	queries,	predict	salaries	to	2%	error		

•  Generic	reduction	from	DR	with	known	queries	to	PAC	learning	
•  Give	“minimal”	attack	for	all	query	types	via	ε-nets	

Instantiate	with	first	DR	attack	for	prefix	queries	
•  First	general	lower	bound	on	#queries	needed	for	DR	

Full	version:	https://eprint.iacr.org/2019/011	

Thanks	for	listening!	
Any	questions?	





Effective	constants	are	~	1!	

Attack	Simulation	
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ApproxValue experimental results
R = 1000, compared to theoretical ✏-sample bound



X	=	range	queries			𝓒	={{range	queries	∋	x}:	x	∈	[1,N]}	

DR	As	Learning	a	Binary	Classifier	

This	formulation	is	not	specific	to	range	queries!	

Record	values	are	binary	classifiers	

Approximately	learning	classifier	=>	approximate	DR	


