Learning to Reconstruct: Statistical Learning Theory and Encrypted Database Attacks

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, Kenny Paterson

pag225@cornell.edu, @pag_crypto

ETH zürich

Outsourced Databases

Encrypting Outsourced Databases?

Encrypted Databases

What can an attacker learn from access pattern leakage?

Database Reconstruction (DR)

With enough queries, can learn data from access patterns! [KKNO], [LMP], [KPT]

Prior work:

huge numbers of queries, strong assumptions, specific query types. [KKNO]: 10²⁶ for salaries [LMP]: dense database [KPT]: kNN queries only

Our Contributions

- Enabling insight: access pattern leakage is a binary classification Use statistical learning theory (SLT) to build and analyze attacks
- New DR attacks on range queries Generalize and improve [KKNO], [LMP] with SLT + PQ trees On real data: with only 50 queries, predict salaries to 2% error
- Generic reduction from DR with known queries to PAC learning
- Give "minimal" attack for all query types via ε-nets Instantiate with first DR attack for prefix queries
- First general lower bound on #queries needed for DR

Full version: https://eprint.iacr.org/2019/011

Our Contributions

- Enabling insight: access pattern leakage is a binary classification Use statistical learning theory (SLT) to build and analyze attacks
- New DR attacks on range queries Generalize and improve [KKNO], [LMP] with SLT + PQ trees On real data: with only 50 queries, predict salaries to 2% error
- Generic reduction from DR with known queries to PAC learning
- Give "minimal" attack for all query types via ε-nets Instantiate with first DR attack for prefix queries
- First general lower bound on #queries needed for DR

Full version: https://eprint.iacr.org/2019/011

Notation and Terminology

N: number of possible values, wlog [1, ..., N] E.g., N=125 for age data
Range query: is a pair [a, b] where 1 ≤ a ≤ b ≤ N.
Database: is composed of *records*, each with values in [1, ..., N]

Access Pattern: which records match

Full database reconstruction (DR): recovering exact record values **Approximate** DR: recovering all record values within εN.

 ϵ = 0.05 is recovery within 5%. ϵ = 1/N is full DR.

Scale-free: query complexity independent of #records or N.

DR For Range Queries: Our Work

Assume **uniform distribution** on range queries + static database. Induces a distribution **f** on the probability that a value is accessed.

More probable

Less probable

GeneralizedKKNO

Idea: for each record...

1. Count #accesses to estimate f(value)

More work needed to break symmetry. See paper for details

How many queries to get estimate sufficient for ε approx. DR?

Estimating a Probability

Set X with probability distribution D. Let $C \subseteq X$ be a set.

 $\Pr(C) \approx \frac{\#\text{points in } C}{\#\text{points total}}$

Sample complexity: to measure Pr(C) within ε , you need $O(1/\varepsilon^2)$ samples.

Estimating a Set of Probabilities

Now: set of sets C. Goal: estimate all sets' probabilities *simultaneously*.

The set of samples drawn from X is an ε -sample iff for all C in C:

$$\left| \Pr(C) - \frac{\#\text{points in } C}{\#\text{points total}} \right| \leq \epsilon$$

The ε-sample Theorem

How many points do we need to draw to get an ε-sample w.h.p.?

V & C 1971:

If \mathcal{C} has **VC dimension** d, then the number of points to get an ϵ -sample whp is

$$O(rac{d}{\epsilon^2}\lograc{d}{\epsilon}).$$

Does not depend on |C|!

GeneralizedKKNO

Idea: for each record...

1. Count #accesses to estimate f(value)

2. Find value by "inverting" f estimate

This is an ε-sample!

Can we get rid of squaring?

X = range queries $\mathcal{C} = \{ \{ \text{range queries} \ni x \} : x \in [1,N] \} \ VC \ dim. = 2 \}$

GeneralizedKKNO

We need O($\epsilon^{-4} \log \epsilon^{-1}$) queries (inverting **f** adds a square)

ApproxValue

DR For Range Queries: Our Work

Three attacks:		Full DR	Lower Bound
▶	GeneralizedKKNO: O($\epsilon^{-4} \log \epsilon^{-1}$) for approx. DR	$O(N^4 \log N)$	Ω(ε ⁻⁴)
▶	ApproxValue: O(ε ⁻² log ε ⁻¹) approx. DR [*]	$O(N^2 \log N)$	Ω(ε ⁻²)
▶	ApproxOrder: O(ε ⁻¹ log ε ⁻¹) for approx. <i>order</i> rec [*] O(N log N)		$\Omega(\epsilon^{-1} \log \epsilon^{-1})$
	With DB distribution info, get approx. DR		

Require iid uniform queries, adversary knows query distribution. What can we do without making these assumptions?

DR For Range Queries: Our Work

Reveal order without no assumptions on query distribution. See paper for details

Conclusion

- Enabling insight: access pattern leakage is a binary classification Use statistical learning theory (SLT) to build and analyze attacks
- New DR attacks on range queries Generalize and improve [KKNO], [LMP] with SLT + PQ trees On real data: with only 50 queries, predict salaries to 2% error
- Generic reduction from DR with known queries to PAC learning
- Give "minimal" attack for all query types via ε-nets Instantiate with first DR attack for prefix queries
- First general lower bound on #queries needed for DR

Full version: https://eprint.iacr.org/2019/011

Thanks for listening! Any questions?

Attack Simulation

Effective constants are ~ 1!

DR As Learning a Binary Classifier

This formulation is not specific to range queries!

Record values are binary classifiers X = range queries $\mathcal{C} = \{\{\text{range} | \text{queries} \ni x\}: x \in [1, N]\}$

Approximately learning classifier => approximate DR